K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2015

Áp dụng dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(x^2=4.9=36\)

               => x = 6 hoặc x = -6 

=>  \(y^2=4.16=64\) 

                => y = 8 hoặc y = -8 

26 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)

\(\Rightarrow x^2=36\Rightarrow x=\pm6\)

\(\Rightarrow x^2=64\Rightarrow x=\pm8\)

Vậy .....

18 tháng 7 2019

a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7

Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)

Mà \(\frac{y}{4}=\frac{z}{5}\)nên  \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)

Từ \(\frac{x}{2}=1=>x=2\)

Từ\(\frac{y}{4}=1=>y=4\)

Từ \(\frac{z}{5}=1=>z=5\)

 \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)

18 tháng 7 2019

Cam on

4 tháng 8 2018

Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{3^2}=\frac{y^2}{4^2}=\frac{x^2}{9}=\frac{y^2}{16}\)  

Ap dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{16+9}=\frac{100}{25}=4\)

\(\Rightarrow\frac{x^2}{9}=4\Rightarrow x=4\times9=36\Rightarrow x=6;x=-6\)

\(\frac{y^2}{16}=4\Rightarrow y^2=4\times16=64\Rightarrow y=8;y=-8\)

Vậy x= 6, y = 8 

x=-6 , y= -8

18 tháng 10 2018

i don't no

18 tháng 10 2018

nguyen tran phuong vy: vt sai kìa, phải là I don't know

29 tháng 10 2016

C, CHO 7X=3Y VA X -Y =16

=> \(\frac{x}{3}=\frac{y}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)

=> \(\hept{\begin{cases}x=-4.3\\y=-4.7\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-28\end{cases}}}\)

bạn viết lại đề đi đè gì mà sai hết

27 tháng 11 2016

Đặt \(\frac{x-2}{6}=\frac{y+3}{9}=\frac{z-7}{10}=k\Rightarrow\hept{\begin{cases}x=6k+2\\y=9k-3\\z=10k+7\end{cases}}\)

Theo đề bài: x+y+z=106

<=>\(6k+2+9k-3+10k+7=106\)

<=>\(25k+6=106\)

<=> 25k = 100

<=> k = 4

=> \(\hept{\begin{cases}x=6.4+2=26\\y=9.4-3=33\\z=10.4+7=47\end{cases}}\)

Vậy .........................

25 tháng 9 2017

bảo oline math giải hộ dễ thế hihi

chúc thành công

16 tháng 9 2016

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

\(\Rightarrow\begin{cases}x^2=36\\y^2=64\end{cases}\)

\(\Rightarrow\begin{cases}x=\pm6\\y=\pm8\end{cases}\)

Mà 9 và 16 cùng dấu

=> x ; y cùng dấu

\(\Rightarrow\left(x;y\right)\in\left\{\left(6;8\right);\left(-6;-8\right)\right\}\)

16 tháng 9 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

+) \(\frac{x^2}{9}=4\Rightarrow x=\pm6\)

+) \(\frac{y^2}{16}=4\Rightarrow y=\pm8\)

Vậy \(x=\pm6;y=\pm8\)