Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !
\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'
Ta có : \(x-24=y\) hay cũng có thể viết \(x-y=24\)
Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) ( vì \(x-y=24\) )
\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)
\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)
Vậy \(x=42\) và \(y=18\)
a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7
Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)
Mà \(\frac{y}{4}=\frac{z}{5}\)nên \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)
Từ \(\frac{x}{2}=1=>x=2\)
Từ\(\frac{y}{4}=1=>y=4\)
Từ \(\frac{z}{5}=1=>z=5\)
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
e, Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{8}=\frac{14-6}{8}=1\)
Do đó: \(\frac{x-1}{2}=1\Rightarrow x=2.1+1=3\)
\(\frac{2y-4}{6}=1\Rightarrow y=\frac{6.1+4}{2}=5\)
\(\frac{3z-9}{12}=1\Rightarrow z=\frac{12.1+9}{3}=7\)
Vậy x=3; y=5; z=7
h, Ta có: \(\frac{x}{2}=\frac{y}{3}=\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2=\frac{x^2}{4}=\frac{y^2}{9}=\frac{x.y}{2.3}=\frac{54}{6}=9\)
Do đó: \(\frac{x^2}{4}=9\Rightarrow x^2=4.9=36\Rightarrow x=6;x=-6\)
\(\frac{y^2}{9}=9\Rightarrow y^2=9.9=81\Rightarrow y=9;y=-9\)
a) x = 6 ; y = 15.
x = -6 ; y = -15.
b) x = 2 ; y = 2.
x = -2 ; y = -2.
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Thay vào x.y.z mà tính nha bạn
Từ \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\left(\frac{x}{2}\right)^3=\frac{x}{2}.\frac{y}{3}.\frac{z}{5}=\frac{xyz}{30}=\frac{810}{30}=27.\)
Do đó \(\frac{x}{2}=3.\)
- \(\frac{x}{2}=3.2=6\)
- \(\frac{y}{3}=3.3=9\)
- \(\frac{z}{5}=3.5=15\)
Vậy x=6,y=9,z=15.
mk nhé bạn ^...^ ^_^
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\) và x2 - y2 + 2x2 = 108
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4\)
\(\Rightarrow\frac{x^2}{4}=4\Rightarrow x=4\)
\(\Rightarrow\frac{y^2}{9}=4\Rightarrow y=6\)
\(\Rightarrow\frac{2z^2}{32}=4\Rightarrow z=8\)
theo dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)<=> \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)<=> \(\frac{x^2-y^2+2z^2}{4+9+32}=\frac{108}{45}=\frac{12}{5}\)
=> x=245
y=36/5
z= 48/5
A:
Đặt \(k=\frac{x}{4}=\frac{y}{7}\)
Ta có :
\(\frac{x}{4}=\frac{y}{7}\Rightarrow\hept{\begin{cases}x=k.4\\y=k.7\end{cases}}\)
Theo bài ra ta có :
\(x.y=112\Rightarrow k.4.k.7=112\Rightarrow28.k^2=112\Rightarrow k^2=4\Rightarrow k=\text{±}2\)
TH1 : k=2
=> \(\hept{\begin{cases}x=2.3\\y=2.7\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}}\)
Th2 : k=-2
\(\Rightarrow\hept{\begin{cases}x=-2.3\\y=-2.7\end{cases}\Rightarrow\hept{\begin{cases}x=-6\\y=-14\end{cases}}}\)
còn câu b thì trong sách có đó
1) Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y-x+y}{2015-2017}=\frac{2y}{-2}\)
\(=-y\)
\(\Rightarrow xy=-2016y;x+y=-2015y;\)
\(x-y=-2017y\)
\(\Rightarrow-2016y-xy=0\)
\(\Rightarrow y\left(-2016-x\right)=0\)
\(\Rightarrow\orbr{\orbr{\begin{cases}y=0\\-2016-x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}y=0\\x=-2016\end{cases}}\)
\(+) \)\(y=0\Rightarrow0+x=-2015.0=0\Rightarrow x=0\)
\(+) \)\(x=-2016\Rightarrow-2016-y=-2017y\Rightarrow-2016\)
Vậy +) x=y=0
+) x=-2016;y=1
2) Có: \(\frac{2x+2}{3}=\frac{x+1}{1,5};\frac{4z+2}{5}=\frac{z+0,5}{1,25};\frac{3y-1}{4}=\frac{y-\frac{1}{3}}{\frac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{1,5}=\frac{y-\frac{1}{3}}{\frac{4}{3}}=\frac{z+0,5}{1,25}=\frac{x+y+z+\left(1-\frac{1}{3}+0,5\right)}{1,5+\frac{4}{3}+1,25}=\frac{7+\frac{7}{6}}{\frac{49}{12}}=2\)
Suy ra: \(x+1=2.1,5=3\Rightarrow x=2\)
\(y-\frac{1}{3}=2.\frac{4}{3}=\frac{8}{3}\Rightarrow y=3\)
\(z+0,5=2.1,25=2,5\Rightarrow z=2\)
Vậy x=2;y=3;z=2.
Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{3^2}=\frac{y^2}{4^2}=\frac{x^2}{9}=\frac{y^2}{16}\)
Ap dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{16+9}=\frac{100}{25}=4\)
\(\Rightarrow\frac{x^2}{9}=4\Rightarrow x=4\times9=36\Rightarrow x=6;x=-6\)
\(\frac{y^2}{16}=4\Rightarrow y^2=4\times16=64\Rightarrow y=8;y=-8\)
Vậy x= 6, y = 8
x=-6 , y= -8