Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ chỉ làm câu b thôi nhé
Nếu x/2=y/3,y/5=z/7 Suy ra y là 15 phần, x là 10 phần, z là 21 phần
92:(15+10+21)=2
x=2.10=20
y=2.15=30
z=2.21=42
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
Có: \(\frac{x}{2}=\frac{y}{3};\frac{z}{5}=\frac{y}{7}\)
\(\Leftrightarrow\)\(\frac{x}{14}=\frac{y}{21};\frac{z}{15}=\frac{y}{21}\)
=> \(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}=\frac{x+y+z}{14+21+15}=\frac{92}{50}=\frac{46}{25}\)
\(\Rightarrow\begin{cases}x=\frac{644}{25}\\y=\frac{966}{25}\\z=\frac{138}{5}\end{cases}\)
c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)
\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)
mà\(2x^2+2y^2-3z^2=-100\)
thay\(6k^2+8k^2-15k^2=-100\)
\(k^2\left(6+8-15\right)=-100\)
\(k^2.\left(-1\right)=-100\)
\(k^2=100\)
\(\Rightarrow k=\pm10\)
bạn thế vào nha
a) Áp dụng tính chất ..., ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{8}{4}=2\)
\(\Rightarrow x=4;y=6;z=8\)
b)2x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{2}\)\(\Rightarrow\frac{x}{20}=\frac{y}{10}\)( 1 )
4y =5z \(\Rightarrow\frac{y}{5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{10}=\frac{z}{8}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{8}\)
Áp dụng tính chất ..., ta có :
\(\frac{x}{20}=\frac{y}{10}=\frac{z}{8}=\frac{x-y+2z}{20-10+16}=\frac{40}{26}=\frac{20}{13}\)
\(\Rightarrow x=\frac{400}{13};y=\frac{200}{13};z=\frac{160}{13}\)
còn lại tương tự
ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{4+9+25}=\frac{152}{38}=4\)
vậy ta có \(x^2=16\Rightarrow\orbr{\begin{cases}x=4,y=-6,z=10\\x=-4,y=6,z=-10\end{cases}}\)
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\)và x+y+z=92
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}\)
\(\Leftrightarrow\dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{21}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{y}{15}=\dfrac{z}{21}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\dfrac{x}{10}=2\Rightarrow x=20\)
\(\Rightarrow\dfrac{y}{15}=2\Rightarrow y=30\)
\(\Rightarrow\dfrac{z}{21}=2\Rightarrow z=42\)
Vậy x=20 ; y=30 và z=42
Vì bạn kia giải câu b rồi nên mình giải câu a và c nha!
a) \(\dfrac{1}{2}x=\dfrac{2}{3}y=\dfrac{3}{4}z\)và x - y = 15
Ta có: \(\dfrac{1}{2}x=\dfrac{2}{3}y=\dfrac{3}{4}z\)⇒\(\dfrac{6x}{12}=\dfrac{8y}{12}=\dfrac{9z}{12}\)
⇒\(\dfrac{x}{2}=\dfrac{y}{1,5}=\dfrac{z}{1,\left(3\right)}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{1,5}=\dfrac{z}{1,\left(3\right)}\)=\(\dfrac{x-y}{2-1,5}=\dfrac{15}{0.5}=30\)
\(\dfrac{x}{2}=30\Rightarrow x=30.2=60\)
\(\dfrac{y}{1,5}=30\Rightarrow y=30.1,5=45\)
\(\dfrac{z}{1,\left(3\right)}=30\Rightarrow z=30.1,\left(3\right)=40\)
Vậy \(x=60,y=45,z=40\)
Ta có: \(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}=>\frac{y}{15}=\frac{z}{21}\)
\(=>\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tc dãy tỉ số = nhau:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(=>\hept{\begin{cases}x=2\cdot10=20\\y=2\cdot15=30\\z=2\cdot21=42\end{cases}}\)
Vậy . . . . . . . . . . . .
TA CÓ : \(\frac{X}{2}=\frac{Y}{3}\Rightarrow\frac{X}{10}=\frac{Y}{15}\)
\(\frac{Y}{5}=\frac{Z}{7}\Rightarrow\frac{Y}{15}=\frac{Z}{21}\)
\(\Rightarrow\frac{X}{10}=\frac{Y}{15}=\frac{Z}{21}\)
ADTCDTSBN
\(\frac{X}{10}=\frac{Y}{15}=\frac{Z}{21}=\frac{X+Y+Z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow\frac{X}{10}=2\Rightarrow X=20\)
\(\frac{Y}{15}=2\Rightarrow Y=30\)
\(\frac{Z}{21}=2\Rightarrow Z=42\)
VẬY X=20; Y=30;Z=42
Ta có :
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\\\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\end{cases}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Theo tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow x=2\times10=20\)
\(\Rightarrow y=2\times15=30\)
\(\Rightarrow z=2\times21=42\)
k cho mk nha
Ta có : \(\frac{4}{5}=\frac{z}{7}\)=> z = 5,6
=> x + y = 92 - z = 92 - 5,6
=> x + y = 86,4
Lại có : \(\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{86,4}{5}=17,28\)
\(\Rightarrow\hept{\begin{cases}x=17,28.2=34,56\\y=17,28.3=51,84\end{cases}}\)