Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{2}\times\left(\frac{1}{13\times11}+\frac{1}{13\times15}+\frac{1}{15\times17}+.....+\frac{1}{97\times99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+......+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\frac{8}{99}\)
\(A=\frac{4}{33}\)
b] \(\frac{A}{5}=\frac{4}{31.35}+\frac{6}{35.41}+\frac{9}{41.50}+\frac{7}{50.57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{35}+\frac{1}{35}-\frac{1}{41}+\frac{1}{41}-\frac{1}{50}+\frac{1}{50}-\frac{1}{57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{57}\)
\(\Rightarrow A=5\left(\frac{1}{31}-\frac{1}{57}\right)=\frac{130}{1767}\)
c] Ta đặt \(\left(8n+5,6n+4\right)=d\)
\(\Rightarrow\frac{8n+5\div d}{6n+4\div d}\Rightarrow4\times\left(6n+4\right)-3\times\left(8n+5\right)=\left(24n+16\right)-\left(24n+15\right):d\)\(\Rightarrow d=1\)
Vậy \(\frac{8n+5}{6n+4}\)là phân số tối giản
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{99}{100}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{99}{100}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{99}{100}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Rightarrow x+1=100\)
\(\Rightarrow x=99\left(tm\right)\)
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
Ta có : \(\frac{7}{x-2005}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x-2005}=\frac{29}{45}-\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)\)
\(\Rightarrow\frac{7}{x-2005}=\frac{29}{45}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(\Rightarrow\frac{7}{x-2005}=\frac{29}{45}-\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}-\frac{8}{45}=\frac{7}{15}\)
\(\Rightarrow x-2005=15\Rightarrow x=15+2005=2020\)
Vậy x =2020
\(\frac{x+1}{9}+\frac{x+2}{8}+\frac{x+3}{7}+...+\frac{x+9}{1}=-9\)
\(\left(\frac{x+1}{9}+1\right)+\left(\frac{x+2}{8}+1\right)+\left(\frac{x+3}{7}+1\right)+...+\left(\frac{x+9}{1}+1\right)=0\)
\(\frac{x+10}{9}+\frac{x+10}{8}+\frac{x+10}{7}+...+\frac{x+10}{1}=0\)
\(\left(x+10\right).\left(\frac{1}{9}+\frac{1}{8}+\frac{1}{7}+...+1\right)=0\)
vì \(\frac{1}{9}+\frac{1}{8}+\frac{1}{7}+...+1\ne0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
\(PT\Leftrightarrow\left(x-2\right).\left(x+7\right)=\left(x+9\right).\left(x-1\right)\)
\(\Leftrightarrow x^2+5x-14=x^2+8x-9\)
\(\Leftrightarrow-3x=5\)
\(\Leftrightarrow x=\frac{-5}{3}\left(TMĐK\right)\)
\(\frac{x-2}{x-1}=\frac{x+9}{x+7}\)
=> \(\frac{\left(x-1\right)-1}{x-1}=\frac{\left(x+7\right)+2}{x+7}\)
=> \(1-\frac{1}{x-1}=1+\frac{2}{x+7}\)
=> \(-\frac{1}{x-1}=\frac{2}{x+7}\)
=> \(-1.\left(x+7\right)=2\left(x-1\right)\)
=> \(-x-7=2x-2\)
=> \(-x-2x=-2+7\)
=> \(-3x=5\)
=> \(x=5:\left(-3\right)=-\frac{5}{3}\)