Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a, \(\frac{x+5}{2017}-\frac{x+5}{2018}+\frac{x+5}{2019}-\frac{x+5}{2020}=0\)
\(\left(x+5\right)\left(\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Do \(\left(\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}\right)\ne0\)
\(\Rightarrow\text{ }x+5=0\)
\(x=0-5\)
\(=-5\)
Đặt S = 1x2 + 2x3 + 3x4 + 4x5 + ... + 98x99
3S = 1x2x3 + 2x3(4-1) + 3x4x(5-2) + 4x5x(6-3) ... + 98x99x(100 - 97)
3S = 1x2x3 + 2x3x4 - 1x3x4 + 3x4x5 - 2x3x4 + ... + 98x99x100 - 97x98x99
3S = 98x99x100 => S = 1/3x98x99x100.
Thay vào đề bài ta được:
\(\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=\frac{12}{\frac{6}{7}}:\frac{-3}{2}\Leftrightarrow\frac{33\cdot100\cdot x}{275}=-\frac{12}{\frac{6}{7}}\cdot\frac{2}{3}\)
\(\Leftrightarrow12x=-12\cdot\frac{7}{6}\cdot\frac{2}{3}\Leftrightarrow x=-\frac{7}{9}\)
/i 4 U 4 nothing but if U are nothing, nothing will come to U again. /i
a) ta có: \(\frac{x+13}{2006}+\frac{x+2006}{13}+\frac{x+1}{2018}+3=0\)
\(\Rightarrow\frac{x+13}{2006}+1+\frac{x+2006}{13}+1+\frac{x+1}{2018}+1=0\)
\(\Rightarrow\frac{x+2019}{2006}+\frac{x+2019}{13}+\frac{x+2019}{2018}=0\)
\(\Rightarrow\left(x+2019\right)\left(\frac{1}{2006}+\frac{1}{13}+\frac{1}{2018}\right)=0\)
mà \(\frac{1}{2006}+\frac{1}{13}+\frac{1}{2018}>0\)
\(\Rightarrow x+2019=0\)
\(\Rightarrow x=-2019\)
b) \(\frac{4}{\left(x+3\right)\left(x+7\right)}+\frac{3}{\left(x+7\right)\left(x+10\right)}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow\frac{\left(x+7\right)-\left(x+3\right)}{\left(x+3\right)\left(x+7\right)}+\frac{\left(x+10\right)-\left(x+7\right)}{\left(x+7\right)\left(x+10\right)}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow\frac{1}{x+3}-\frac{1}{x+7}+\frac{1}{x+7}-\frac{1}{x+10}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow\frac{1}{x+3}-\frac{1}{x+10}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow\frac{7}{\left(x+3\right)\left(x+10\right)}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow x=7\)
\(\frac{x}{2}-\left(\frac{3}{5}x-\frac{13}{5}\right)=-\left(\frac{7}{5}+\frac{7}{10}x\right)\)
\(\Rightarrow\frac{5x-6x+26+14+7x}{10}=0\Rightarrow6x+40=0\Rightarrow x=-\frac{20}{3}\)
a.
\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)
TH1:
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
TH2:
\(x-\frac{3}{4}=0\)
\(x=\frac{3}{4}\)
Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)
b.
\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)
TH1:
\(\frac{1}{2}x-3=0\)
\(\frac{1}{2}x=3\)
\(x=3\div\frac{1}{2}\)
\(x=3\times2\)
\(x=6\)
TH2:
\(\frac{2}{3}x+\frac{1}{2}=0\)
\(\frac{2}{3}x=-\frac{1}{2}\)
\(x=-\frac{1}{2}\div\frac{2}{3}\)
\(x=-\frac{1}{2}\times\frac{3}{2}\)
\(x=-\frac{3}{4}\)
Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)
c.
\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)
\(-\frac{4}{3}x=\frac{13}{3}\)
\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)
\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)
\(x=-\frac{13}{4}\)
d.
\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)
\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)
\(x=5\)
\(A=xemlai\) chưa hưa hiểu Quy luật
\(B=\frac{\left(n.\left(n+2\right)+1\right)}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(B=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.5}...\frac{98.98}{97.99}\frac{99.99}{98.100}\frac{100.100}{99.101}\\\)
\(B=\frac{2.100}{1.101}=\frac{200}{101}\)
\(\frac{\left(-7\right)^{^{x-1}}}{49}\)=\(\frac{-49}{49}\)
=>\(\left(-7\right)^{^{x-1}}\)=-49
\(\left(-7\right)^{^{x-1}}\)=\(\left(-7\right)^2\)
=> x-1 = 2
x = 2+1
x = 3