K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

\(\frac{\left(-7\right)^n}{\left(-7\right)^{n-1}}\)

\(=\frac{\left(-7\right)^n}{\left(-7\right)^n:\left(-7\right)}\)

\(=\frac{\left(-7\right)^n}{\left(-7\right)^n.\frac{1}{\left(-7\right)}}\)

\(=\frac{1}{\frac{1}{-7}}\)

\(=-7\)

20 tháng 10 2021

-7 nha bạn

13 tháng 12 2015

\(\frac{\left(-\frac{5}{7}\right)^{n+1}}{\left(-\frac{5}{7}\right)^n}=\frac{\left(-\frac{5}{7}\right)^n.\left(-\frac{5}{7}\right)}{\left(-\frac{5}{7}\right)^n}=\frac{-\frac{5}{7}}{1}=-\frac{5}{7}\)

10 tháng 12 2015

\(\frac{-5}{7}\)

10 tháng 10 2020

a) Ta có: \(\left(0.25\right)^4\cdot1024\)

\(=\left(0.25\right)^4\cdot4^4\cdot4\)

\(=\left(0.25\cdot4\right)^2\cdot4\)

\(=1^2\cdot4=4\)

b) Ta có: \(\frac{230^3}{23^3}\)

\(=\left(\frac{230}{23}\right)^3\)

\(=10^3=1000\)

c) Ta có: \(\frac{\left(-7\right)^n}{\left(-7\right)^{n-1}}\)

\(=\left(-7\right)^n:\left[\frac{\left(-7\right)^n}{-7}\right]\)

\(=\left(-7\right)^n\cdot\frac{-7}{\left(-7\right)^n}\)

\(=-7\)

23 tháng 7 2018

a) \(\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^{n-1}}\)

\(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n:\left(-\dfrac{5}{7}\right)}\)

\(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n.\left(-\dfrac{7}{5}\right)}\)

\(=\dfrac{1}{\left(-\dfrac{7}{5}\right)}\)

\(=1.\left(-\dfrac{5}{7}\right)\)

\(=-\dfrac{5}{7}\)

b) \(\dfrac{\left(-\dfrac{1}{2}\right)^{2n}}{\left(-\dfrac{1}{2}\right)^n}\)

\(=\dfrac{\left(-\dfrac{1}{2}\right)^n.\left(-\dfrac{1}{2}\right)^n}{\left(-\dfrac{1}{2}\right)^n}\)

\(=\left(-\dfrac{1}{2}\right)^n\)

22 tháng 7 2018

a/ \(\left(2^2\right)^{\left(2^2\right)}=4^4=256\)

b/ \(\dfrac{\left(-\dfrac{5}{7}\right)^{n+1}}{\left(-\dfrac{5}{7}\right)^n}=\dfrac{\left(-\dfrac{5}{7}\right)^n.\left(-\dfrac{5}{7}\right)}{\left(-\dfrac{5}{7}\right)^n}=-\dfrac{5}{7}\)

c/ \(\dfrac{8^{14}}{4^{12}}=\dfrac{\left(2^3\right)^{14}}{\left(2^2\right)^{12}}=\dfrac{2^{42}}{2^{24}}=2^{18}\)

22 tháng 7 2018

thank you

3 tháng 6 2019

\(C=\frac{7}{9}x^3y^2\left(\frac{6}{11}axy^3\right)+\left(-5bx^2y^4\right)\left(\frac{-1}{2}axz\right)+ax\left(x^2y\right)^3\)

\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax\left(x^6y^3\right)\)

\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax^7y^3\)

\(D=\frac{\left(3x^4y^4\right)^2\left(\frac{6}{11}x^3y\right)\left(8x^{n-7}\right)\left(-2x^{7-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)^2}\)

\(D=\frac{\left[3.\frac{6}{11}.8.\left(-2\right)\right]\left(x^8x^3x^{n-7}x^{7-n}\right)\left(y^8y\right)}{15.0,4.\left(x^3x^4\right)\left(y^2y^4\right)z^4a}\)

\(D=\frac{\frac{-188}{11}x^{24}y^9}{6x^7y^6z^4a}\)

30 tháng 9 2016

a)\(\left(\frac{1}{5}\right)^{3n-1}=\frac{1}{25}\)

\(\Leftrightarrow\left(\frac{1}{5}\right)^{3n-1}=\left(\frac{1}{5}\right)^2\)

\(\Leftrightarrow3n-1=2\)

\(\Leftrightarrow3n=3\)

\(\Leftrightarrow n=1\)

b)\(\left(\frac{4}{7}\right)^{n+2}=\frac{7}{4}\)

\(\Leftrightarrow\left(\frac{4}{7}\right)^{n+2}=\left(\frac{4}{7}\right)^{-1}\)

\(\Leftrightarrow n+2=-1\)

\(\Leftrightarrow n=-3\)

c)\(\left(\frac{2}{3}\right)^{-n+1}=\frac{3^3}{2^3}\)

\(\Leftrightarrow\left(\frac{2}{3}\right)^{-n+1}=\left(\frac{3}{2}\right)^3\)

\(\Leftrightarrow\left(\frac{2}{3}\right)^{-n+1}=\left(\frac{2}{3}\right)^{-3}\)

\(\Leftrightarrow-n+1=-3\)

\(\Leftrightarrow n=-4\)

c)\(\left(0,7\right)^{3n+1}=10^3:7^3\)

\(\Leftrightarrow\left(\frac{7}{10}\right)^{3n+1}=\left(\frac{10}{7}\right)^3\)

\(\Leftrightarrow\left(\frac{7}{10}\right)^{3n+1}=\left(\frac{7}{10}\right)^{-3}\)

\(\Leftrightarrow3n+1=-3\)

\(\Leftrightarrow3n=-4\)

\(\Leftrightarrow n=-\frac{4}{3}\)

1 tháng 7 2015

\(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{n\left(n+1\right)\left(n+2\right)}{6}+\frac{6}{6}=\frac{n\left(n+1\right)\left(n+2\right)+6}{6}\)

Nếu n=1 thì ta có: [1(1+1)(1+2)+6]/6=[1*2*3+6]/6=12/6=2(là số nguyên tố)

Nếu n=2 thì ta có: [2(2+1)(2+2)+6]/6=[2*3*4+6]/6=24/6=4(ko phải là số nguyên tố)

Nếu n=3 thì ta có: [3(3+1)(3+2)+6]/6=[3*4*5+6]/6=11(là số nguyên tố)

Nếu n=4 thì ta có: [4*5*6+6]/6=120/6=20(ko phải là số nguyên tố)

cứ như vậy tiếp dần thì ta chỉ có n=1 thì p mới là số nguyên tố, thì p=2

Vậy tất cả các số nguyên tố p cần tìm chỉ có thể p=2

cái này mk ko chắc lắm đâu, chưa làm dạng này bao giờ

 

1 tháng 7 2015

Thạch ơi, cái bài này mk giải như thế đúng k?