Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(-\frac{5}{7}\right)^{n+1}}{\left(-\frac{5}{7}\right)^n}=\frac{\left(-\frac{5}{7}\right)^n.\left(-\frac{5}{7}\right)}{\left(-\frac{5}{7}\right)^n}=\frac{-\frac{5}{7}}{1}=-\frac{5}{7}\)
a) Ta có: \(\left(0.25\right)^4\cdot1024\)
\(=\left(0.25\right)^4\cdot4^4\cdot4\)
\(=\left(0.25\cdot4\right)^2\cdot4\)
\(=1^2\cdot4=4\)
b) Ta có: \(\frac{230^3}{23^3}\)
\(=\left(\frac{230}{23}\right)^3\)
\(=10^3=1000\)
c) Ta có: \(\frac{\left(-7\right)^n}{\left(-7\right)^{n-1}}\)
\(=\left(-7\right)^n:\left[\frac{\left(-7\right)^n}{-7}\right]\)
\(=\left(-7\right)^n\cdot\frac{-7}{\left(-7\right)^n}\)
\(=-7\)
a) \(\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^{n-1}}\)
\(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n:\left(-\dfrac{5}{7}\right)}\)
\(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n.\left(-\dfrac{7}{5}\right)}\)
\(=\dfrac{1}{\left(-\dfrac{7}{5}\right)}\)
\(=1.\left(-\dfrac{5}{7}\right)\)
\(=-\dfrac{5}{7}\)
b) \(\dfrac{\left(-\dfrac{1}{2}\right)^{2n}}{\left(-\dfrac{1}{2}\right)^n}\)
\(=\dfrac{\left(-\dfrac{1}{2}\right)^n.\left(-\dfrac{1}{2}\right)^n}{\left(-\dfrac{1}{2}\right)^n}\)
\(=\left(-\dfrac{1}{2}\right)^n\)
a/ \(\left(2^2\right)^{\left(2^2\right)}=4^4=256\)
b/ \(\dfrac{\left(-\dfrac{5}{7}\right)^{n+1}}{\left(-\dfrac{5}{7}\right)^n}=\dfrac{\left(-\dfrac{5}{7}\right)^n.\left(-\dfrac{5}{7}\right)}{\left(-\dfrac{5}{7}\right)^n}=-\dfrac{5}{7}\)
c/ \(\dfrac{8^{14}}{4^{12}}=\dfrac{\left(2^3\right)^{14}}{\left(2^2\right)^{12}}=\dfrac{2^{42}}{2^{24}}=2^{18}\)
\(C=\frac{7}{9}x^3y^2\left(\frac{6}{11}axy^3\right)+\left(-5bx^2y^4\right)\left(\frac{-1}{2}axz\right)+ax\left(x^2y\right)^3\)
\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax\left(x^6y^3\right)\)
\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax^7y^3\)
\(D=\frac{\left(3x^4y^4\right)^2\left(\frac{6}{11}x^3y\right)\left(8x^{n-7}\right)\left(-2x^{7-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)^2}\)
\(D=\frac{\left[3.\frac{6}{11}.8.\left(-2\right)\right]\left(x^8x^3x^{n-7}x^{7-n}\right)\left(y^8y\right)}{15.0,4.\left(x^3x^4\right)\left(y^2y^4\right)z^4a}\)
\(D=\frac{\frac{-188}{11}x^{24}y^9}{6x^7y^6z^4a}\)
a)\(\left(\frac{1}{5}\right)^{3n-1}=\frac{1}{25}\)
\(\Leftrightarrow\left(\frac{1}{5}\right)^{3n-1}=\left(\frac{1}{5}\right)^2\)
\(\Leftrightarrow3n-1=2\)
\(\Leftrightarrow3n=3\)
\(\Leftrightarrow n=1\)
b)\(\left(\frac{4}{7}\right)^{n+2}=\frac{7}{4}\)
\(\Leftrightarrow\left(\frac{4}{7}\right)^{n+2}=\left(\frac{4}{7}\right)^{-1}\)
\(\Leftrightarrow n+2=-1\)
\(\Leftrightarrow n=-3\)
c)\(\left(\frac{2}{3}\right)^{-n+1}=\frac{3^3}{2^3}\)
\(\Leftrightarrow\left(\frac{2}{3}\right)^{-n+1}=\left(\frac{3}{2}\right)^3\)
\(\Leftrightarrow\left(\frac{2}{3}\right)^{-n+1}=\left(\frac{2}{3}\right)^{-3}\)
\(\Leftrightarrow-n+1=-3\)
\(\Leftrightarrow n=-4\)
c)\(\left(0,7\right)^{3n+1}=10^3:7^3\)
\(\Leftrightarrow\left(\frac{7}{10}\right)^{3n+1}=\left(\frac{10}{7}\right)^3\)
\(\Leftrightarrow\left(\frac{7}{10}\right)^{3n+1}=\left(\frac{7}{10}\right)^{-3}\)
\(\Leftrightarrow3n+1=-3\)
\(\Leftrightarrow3n=-4\)
\(\Leftrightarrow n=-\frac{4}{3}\)
\(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{n\left(n+1\right)\left(n+2\right)}{6}+\frac{6}{6}=\frac{n\left(n+1\right)\left(n+2\right)+6}{6}\)
Nếu n=1 thì ta có: [1(1+1)(1+2)+6]/6=[1*2*3+6]/6=12/6=2(là số nguyên tố)
Nếu n=2 thì ta có: [2(2+1)(2+2)+6]/6=[2*3*4+6]/6=24/6=4(ko phải là số nguyên tố)
Nếu n=3 thì ta có: [3(3+1)(3+2)+6]/6=[3*4*5+6]/6=11(là số nguyên tố)
Nếu n=4 thì ta có: [4*5*6+6]/6=120/6=20(ko phải là số nguyên tố)
cứ như vậy tiếp dần thì ta chỉ có n=1 thì p mới là số nguyên tố, thì p=2
Vậy tất cả các số nguyên tố p cần tìm chỉ có thể p=2
cái này mk ko chắc lắm đâu, chưa làm dạng này bao giờ
\(\frac{\left(-7\right)^n}{\left(-7\right)^{n-1}}\)
\(=\frac{\left(-7\right)^n}{\left(-7\right)^n:\left(-7\right)}\)
\(=\frac{\left(-7\right)^n}{\left(-7\right)^n.\frac{1}{\left(-7\right)}}\)
\(=\frac{1}{\frac{1}{-7}}\)
\(=-7\)
-7 nha bạn