Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy ta có :
\(VT=\frac{1}{\sqrt{a}}+\frac{3}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)
\(=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)
\(\ge\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{2\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)
\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)
\(\ge\frac{\left(1+2+1+2+2\right)^2}{2\sqrt{3c+2a}+3\sqrt{b}+\sqrt{a}}\)
\(\ge\frac{64}{\sqrt{\left(1+2^2+3\right)\left(a+2a+3c+3b\right)}}\)
\(=\frac{64}{\sqrt{24\left(a+c+b\right)}}=\frac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}=VP\)
Sai đề thì phải , coi lại giùm mình nhé :
Đặt \(\sqrt[3]{a}=x;\)\(\sqrt[3]{b}=y;\)\(\sqrt[3]{c}=z\)\(\left(a,b,c>0\right)\)
Ta cần chứng minh \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge9\)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt[3]{3.\frac{1}{xyz}}\)
Và \(x+y+z\ge\sqrt[3]{3xyz}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\sqrt[3]{3.\frac{1}{abc}}.\sqrt[3]{3abc}=9\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{x+y+z}\)
Vậy \(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\ge\frac{9}{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}\)\(\left(đpcm\right)\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)
\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
4.
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
5.
\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)
Cộng vế với vế:
\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1.
Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)
\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2.
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng vế với vế:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3.
Từ câu b, thay \(c=1\) ta được:
\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
$(a^3+1)(a+1)\geq (a^2+1)^2\Rightarrow a^3+1\geq \frac{(a^2+1)^2}{a+1}; a+1\leq \sqrt{2(a^2+1)}$
$\Rightarrow \frac{a^3+1}{b\sqrt{a^2+1}}\geq \frac{\sqrt{(a^2+1)^3}}{b(a+1)}\geq \frac{a^2+1}{\sqrt{2}b}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:
$\text{VT}\geq \frac{a^2+1}{\sqrt{2}b}+\frac{b^2+1}{\sqrt{2}c}+\frac{c^2+1}{\sqrt{2}a}$
Bài toán sẽ được chứng minh khi ta chỉ ra được: $\frac{a^2+1}{\sqrt{2}b}+\frac{b^2+1}{\sqrt{2}c}+\frac{c^2+1}{\sqrt{2}a}\geq \sqrt{2}(a+b+c)$
$\Leftrightarrow \frac{a^2+1}{b}+\frac{b^2+1}{c}+\frac{c^2+1}{a}\geq 2(a+b+c)$
$\Leftrightarrow ab^3+bc^3+ca^3+ab+bc+ac\geq 2abc(a+b+c)(*)$
Thật vậy, theo BĐT AM-GM:
$ab^3+bc+a^2b^2c^2\geq 3ab^2c$. Tương tự với $bc^3+ca+a^2b^2c^2\geq 3abc^2; ca^3+ab+a^2b^2c^2\geq 3a^2bc$
Cộng theo vế và thu gọn:
$ab^3+bc^3+ca^3+ab+bc+ac\geq 3abc(a+b+c-abc)(1)$
Mà: $(a+b+c)^3\geq 27abc\geq 27(abc)^3$ (do $abc\leq 1$) nên $a+b+c\geq 3abc(2)$
Từ $(1); (2)\Rightarrow ab^3+bc^3+ca^3+ab+bc+ac\geq 2abc(a+b+c)$. BĐT $(*)$ được chứng minh.
Bài toán hoàn tất.
Lời giải:
Áp dụng BĐT AM-GM:
\(\sqrt[3]{\frac{a^4}{b^4}}+\sqrt[3]{\frac{a^4}{b^4}}+\sqrt[3]{\frac{a^4}{b^4}}+\frac{a}{b}+1\geq \frac{5a}{b}\)
\(\sqrt[3]{\frac{b^4}{c^4}}+\sqrt[3]{\frac{b^4}{c^4}}+\sqrt[3]{\frac{b^4}{c^4}}+\frac{b}{c}+1\geq \frac{5b}{c}\)
\(\sqrt[3]{\frac{c^4}{a^4}}+\sqrt[3]{\frac{c^4}{a^4}}+\sqrt[3]{\frac{c^4}{a^4}}+\frac{c}{a}+1\geq \frac{5c}{a}\)
Cộng theo vế và rút gọn:
\(3\text{VT}\geq 4\text{VP}-3\)
Mà theo BĐT AM-GM: \(\text{VP}=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3\)
Do đó:
$3\text{VT}\geq 4\text{VP}-3\geq 3\text{VP}$
$\Rightarrow \text{VT}\geq \text{VP}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Cách khác:
Đặt \(\sqrt[3]{\frac{a}{b}}=x;\sqrt[3]{\frac{b}{c}}=y;\sqrt[3]{\frac{c}{a}}=z\Rightarrow xyz=1,x>0,y>0,z>0\) (mục đích là khử căn)
Cần chứng minh: \(x^4+y^4+z^4\ge x^3+y^3+z^3\Leftrightarrow x^4+y^4+z^4\ge\sqrt[3]{xyz}\left(x^3+y^3+z^3\right)\)
Do \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}\). Vì vậy, nó đủ để chứng minh rằng:
\(3\left(x^4+y^4+z^4\right)\ge\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)
Đến đây có nhiều hướng giải, sau đây là một vài hướng:
Hướng 1:
Sử dụng BĐT C-S:
\(3\left(x^4+y^4+z^4\right)=3\left(\frac{x^6}{x^2}+\frac{y^6}{y^2}+\frac{z^6}{z^2}\right)\ge\frac{3\left(x^3+y^3+z^3\right)^2}{x^2+y^2+z^2}\)
\(=\frac{3\left(x^3+y^3+z^3\right)\left(\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\right)}{x^2+y^2+z^2}\ge\frac{\frac{3\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)^2}{x+y+z}}{x^2+y^2+z^2}\)
\(=\frac{3\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)}{x+y+z}\ge\left(x^3+y^3+z^3\right)\left(x+y+z\right)\)
Hướng 2:(Dùng SOS)
\(VT-VP=\sum\limits_{cyc} (x^2 +xy+y^2)(x-y)^2 \geq 0\)
Hướng 3: (Dùng S-S)
Giả sử \(z=min\left\{x,y,z\right\}\).
\(VT-VP=2\left(x^2+xy+y^2\right)\left(x-y\right)^2+\left(x-z\right)\left(y-z\right)\left(x^2+xz+y^2+yz+2z^2\right)\ge0\)
Đẳng thức xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c\)
P/s:@Akai Haruma: Em nghĩ hướng này sẽ dễ suy luận hơn cách ghép cặp bằng AM-GM ạ! Cách kia hơi ảo diệu.
a;b;c dương
\(A=\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}}+\frac{c}{\sqrt{a}}+\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}\)
\(\Rightarrow A\ge\frac{\left(\sqrt{b}+\sqrt{c}+\sqrt{a}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\left(\sqrt{c}+\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\Rightarrow A\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
Dấu "=" xảy ra khi \(a=b=c=1\)