\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}\)

Tính:A=20a+1...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

Câu hỏi của nguyen phuong thao - Toán lớp 7 - Học toán với OnlineMathCách làm giống như link bên.

Trừ mỗi vế cho 1, ta có:

\(\frac{b-16a+16c}{4a}=\frac{c-16b+16a}{4b}=\frac{a-16c+16b}{4c}=\frac{a+b+c}{4.\left(a+b+c\right)}=\frac{1}{4}\)(vì a,b,c > 0 nên a+b+c>0)

\(\Leftrightarrow\hept{\begin{cases}b+16c=17a\\c+16a=17b\\a+16b=17c\end{cases}}\Leftrightarrow a=b=c\)

tự thay vào

9 tháng 7 2016

khó quá ak

ừ, bạn bik làm thì giúp mình nha ^^

25 tháng 11 2019

Áp dụng tính chất của tỉ lệ thức ta được:

\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}\) \(\Rightarrow\frac{a+b+c}{2}=\frac{a+b-7+b+c+3+a+c+4}{4\left(a+b+c\right)}=\frac{2\left(a+b+c\right)}{4\left(a+b+c\right)}=\frac{1}{2}\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=1\\a+b-7=2c\\b+c+3=2a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{4}{3}\\b=\frac{5}{3}\\c=-2\end{matrix}\right.\) Thay vào ta được: \(20.\frac{4}{3}+11.\frac{5}{3}+2017.\left(-2\right)=-3989\) Vậy.......................
25 tháng 11 2019

Dòng 4 \(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{4}{3}\\b=\frac{5}{3}\\c=-2\end{matrix}\right.\).

Bạn tính kiểu nào để ra vậy

25 tháng 7 2020

ta có \(\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ca+4a^2}=\frac{11-\left(\frac{a}{b}\right)^3}{\frac{a}{b}+4}\cdot b+\frac{11-\left(\frac{b}{c}\right)^3}{\frac{b}{c}+4}\cdot c+\frac{11-\left(\frac{c}{a}\right)^3}{\frac{c}{a}+4}\cdot a\)

khi a=b=c=1 ta thấy đẳng thức xảy ra

xét \(f\left(x\right)=\frac{11-x^3}{x+4}\)ta có \(\frac{11-x^3}{x+4}\le-x+3\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\ge0\forall x>0\)

thay x bởi a/b ta được \(\frac{11-\left(\frac{a}{b}\right)^3}{\frac{a}{b}+4}\le-\frac{a}{b}+3\Leftrightarrow\frac{11b^3-a^3}{ab+4b^2}\le-a+3b\)

tương tự \(\hept{\begin{cases}\frac{11c^3-b^3}{bc+4c^2}\le-b+3c\\\frac{11ba^3-c^3}{ac+4a^2}\le-c+3a\end{cases}}\)

cộng các bđt cùng chiều ta được

\(\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ac+4a^2}\le2\left(a+b+c\right)=6\)

25 tháng 7 2020

\(\frac{11b^3-a^3}{ab+4b^2}\le3b-a\)

Ta có : \(\frac{1}{a+b+c}=\frac{a+4b-c}{c}=\frac{b+4c-a}{a}=\frac{c+4a-b}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{1}{a+b+c}=\frac{a+4b-c}{c}=\frac{b+4c-a}{a}=\frac{c+4a-b}{b}\)

\(=\frac{a+4b-c+b+4c-a+c+4a-b}{a+b+c}=\frac{4\left(a+b+c\right) }{a+b+c}=4\)

Có : \(\frac{1}{a+b+c}=4\Leftrightarrow1=4\left(a+b+c\right)\Rightarrow a+b+c=\frac{1}{4}\)

Đến đây tự làm nốt