Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{3\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{1\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{4}\right)}{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{4}\right)}=\dfrac{2}{3}+\dfrac{1}{3}=1\)
\(P=\frac{\frac{3}{7}-\frac{3}{13}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{13}+\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{-7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(=\frac{3}{5}+\frac{1}{-7}\)
\(=\frac{16}{35}\)
\(A=\frac{3.\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}{5.\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{1.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}{\left(-7\right).\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(A=\frac{3}{5}+\frac{-1}{7}\)
\(A=\frac{21}{35}+\frac{-5}{35}\)
\(A=\frac{16}{35}\)
\(A=\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(=\frac{3.\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}{5.\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{-\frac{7}{2}+\frac{7}{3}-\frac{7}{4}+\frac{7}{5}}\)
\(=\frac{3}{5}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{-7.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
=3/5+(1/-7)
=3/5-1/7
=16/35
mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
suy ra: \(\frac{x}{3}=2\)=> \(x=6\)
\(\frac{y}{4}=2\)=> \(y=8\)
Vậy...
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
suy ra: \(\frac{x}{5}=10\)=> \(x=50\)
\(\frac{y}{3}=10\)=> \(y=30\)
Vậy...
\(A=\frac{3\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}=\frac{3}{5}+\frac{1}{7}=\frac{26}{35}\)
\(A=\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}=\frac{3.\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}{5.\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{\frac{-1}{5}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{-7}{2}+\frac{7}{5}-\frac{7}{4}+\frac{7}{3}}\)
\(A=\frac{3}{5}+\frac{\frac{1}{2}-\frac{1}{5}-\frac{1}{3}+\frac{1}{4}}{\frac{7}{5}-\frac{7}{2}-\frac{7}{4}+\frac{7}{3}}=\frac{3}{5}+\frac{\frac{1}{20}}{7.\frac{-13}{60}}=\frac{3}{5}+\frac{-3}{91}=\frac{258}{455}\)
\(\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{11}}{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}+\frac{\frac{1}{4}-\frac{1}{5}+\frac{1}{7}}{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}}\)
\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{3\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}+\frac{1\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}\right)}{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}\right)}\)
\(=\frac{2}{3}+\frac{1}{3}\)
\(=1\)
So sánh:
\(P=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\)
\(Q=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\)
Ta có : \(P=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{3}{7^2}+\frac{6}{7^4}\right\}\)
\(Q=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{5}{7^4}+\frac{6}{7^2}\right\}\)
So sánh : \(\frac{3}{7^2}+\frac{6}{7^4}\)và \(\frac{5}{7^4}+\frac{6}{7^2}\)
Ta có : \(\frac{3}{7^2}+\frac{6}{7^4}=\frac{49.3}{7^4}+\frac{6}{7^4}\)
\(\frac{5}{7^4}+\frac{6}{7^2}=\frac{5}{7^4}+\frac{49.6}{7^4}\)
Vì 49.3 + 6 < 49.6 + 5 nên Q > P.
Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !
\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'
Ta có : \(x-24=y\) hay cũng có thể viết \(x-y=24\)
Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) ( vì \(x-y=24\) )
\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)
\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)
Vậy \(x=42\) và \(y=18\)
y=\(\frac{-43}{49}\)
7/5.y+3/7= -4/5
7/5.y =-4/5-3/7
7/5.y = -43/35
y = -43/35:7/5
y = -43/49
ai trên 10 điểm k cho mk