Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1.5.(3.2)+2.10.(6.2)+3.15.(9.2)+4.20.(12.2)+5.25.(15.2)
1.3.5+2.6.10+3.9.15+4.12.20+5.15.25
A=1.5.3+2.10.6+3.15.9+4.20.12+5.25.15(2.2.2.2.2)
1.3.5+2.6.10+3.9.15+4.12.20+5.15.25
A=2.2.2.2.2
A=32
\(\frac{1\cdot3\cdot5\cdot2+2\cdot10\cdot6\cdot2+3\cdot15\cdot9\cdot2+4\cdot20\cdot12\cdot2+5\cdot25\cdot15\cdot2}{1\cdot3\cdot5+2\cdot10\cdot6+3\cdot15\cdot9+4\cdot20\cdot12+5\cdot25\cdot15 }\)
\(2\cdot2\cdot2\cdot2\cdot2=2^5\)
\(=32\)
\(\frac{3^6.45^4-15^{13}.9^{-9}}{27^4.25^3+45^6}=\frac{3^6.\left(3.3.5\right)^4-\left(3.5\right)^{13}-\left(3^2\right)^{-9}}{\left(3^3\right)^4.\left(5^2\right)^3+\left(3.15\right)^6}=\frac{3^6.3^4.3^4.5^4-3^{13}.5^{13}-3^{-18}}{3^{12}.5^6+3^6.15^6}=\frac{3^{14}.5^4-3^{13}.5^{13}-3^{-18}}{3^{12}.5^6+3^6.\left(3.5\right)^6}=\frac{ }{ }\)
Mình nghĩ hết được rồi
\(=\dfrac{2^9\cdot5^9\cdot3^{40}}{2^{12}\cdot5^{10}\cdot3^{20}}=\dfrac{3^{20}}{8\cdot5}\)
\(\dfrac{5^{102}\cdot9^{1009}}{3^{2018}\cdot25^{50}}\)
\(=\dfrac{5^{102}\cdot\left(3^2\right)^{1009}}{3^{2018}\cdot\left(5^2\right)^{50}}\)
\(=\dfrac{5^{102}\cdot3^{2018}}{3^{2018}\cdot5^{100}}\)
\(=\dfrac{5^2\cdot1}{1\cdot1}\)
\(=25\)
giúp mk với
\(\left(x-1\right)^2=\left(x-1\right)^4\)
\(5^{-1}\cdot25^x=125\)
Lưu ý: dấu'.' là dấu nhân
Ta có : (x - 1)2 = (x - 1)4
=> (x - 1)4 - (x - 1)2 = 0
=> (x - 1)2.[(x - 1)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(x-1\right)^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2=1^2\end{cases}\Rightarrow}\orbr{\begin{cases}x-1=0\\x-1=\pm1\end{cases}}}\)
Nếu x - 1 = 0 => x = 1
Nếu x - 1 = 1 => x = 2
Nếu x - 1 = - 1 => x = 0
Vậy \(x\in\left\{0;1;2\right\}\)
b) 5 - 1 . 25x = 125
=> \(\frac{1}{5}.25^x=125\)
=> 25x = 625
=> 25x = 252
=> x = 2
Vậy x = 2
a) \(\left(x-1\right)^2=\left(x-1\right)^4\Leftrightarrow1=\left(x-1\right)^2\)\(\Leftrightarrow x-1=1\Leftrightarrow x=2\)
b) \(5^{-1}.25^x=125\Leftrightarrow5.25^{x-1}=125\Leftrightarrow25^{x-1}=25\)\(\Rightarrow x-1=1\Leftrightarrow x=2\)
\(\frac{5^{102}\cdot9^{1000}}{3^{2018}\cdot25^{50}}=\frac{5^{102}\cdot3^{2000}}{3^{2018}\cdot5^{100}}=\frac{5^2}{3^{18}}\)