Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có:
\(\frac{3}{124}=\frac{30}{1240}\) ; \(\frac{1}{41}=\frac{30}{1230}\) ; \(\frac{5}{207}=\frac{30}{1242}\) ; \(\frac{2}{83}=\frac{30}{1245}\)
Vì các phân số trên đều cùng tử nên ta so sánh mẫu : 1230<1240<1242<1242
=> \(\frac{30}{1230}>\frac{30}{1240}>\frac{30}{1242}>\frac{30}{1245}\)
Hay : \(\frac{1}{41}>\frac{3}{124}>\frac{5}{207}>\frac{2}{83}\)
b/ Ta có:
\(\frac{16}{9}=\frac{48}{27};\frac{24}{13}=\frac{48}{26}\)
Vì 27>26
=> \(\frac{16}{9}< \frac{24}{13}\)
3124=3012403124=301240 ; 141=301230141=301230 ; 5207=3012425207=301242 ; 283=301245283=301245
Vì các phân số trên đều cùng tử nên ta so sánh mẫu : 1230<1240<1242<1242
=> 301230>301240>301242>301245301230>301240>301242>301245
Hay : 141>3124>5207>283141>3124>5207>283
b/ Ta có:
169=4827;2413=4826169=4827;2413=4826
Vì 27>26
=> 169<2413169<2413
\(\frac{55-x}{1963}+\frac{50-x}{1968}+\frac{45-x}{1973}+\frac{40-x}{1978}+4=0\)
\(\Leftrightarrow\left(\frac{55-x}{1963}+1\right)+\left(\frac{50-x}{1968}+1\right)+\left(\frac{45-x}{1973}+1\right)+\left(\frac{40-x}{1978}+1\right)=0\)
\(\Leftrightarrow\frac{2018-x}{1963}+\frac{2018-x}{1968}+\frac{2018-x}{1973}+\frac{2018-x}{1978}=0\)
\(\Leftrightarrow\left(2018-x\right).\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)=0\)
\(\Leftrightarrow2018-x=0\)
\(\Leftrightarrow x=2018\)
Vậy \(x=2018\)
Dễ dàng :v
Có \(\frac{55-x}{1963}+\frac{50-x}{1968}+\frac{45-x}{1973}+\frac{40-x}{1978}+4=0\)
\(\Rightarrow\left(\frac{55-x}{1963}+1\right)+\left(\frac{50-x}{1968}+1\right)+\left(\frac{45-x}{1973}+1\right)+\left(\frac{40-x}{1978}+1\right)=0\)
\(\Rightarrow\frac{2018-x}{1963}+\frac{2018-x}{1968}+\frac{2018-x}{1973}+\frac{2018-x}{1978}=0\)
\(\Rightarrow\left(2018-x\right)\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)=0\)
Mà \(\Rightarrow\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)>0\Rightarrow2018-x=0\)
\(\Rightarrow x=2018-8=2018\)
Vậy x = 2018
\(a,\frac{x-1}{21}=\frac{3}{x+1}\)
\(\Leftrightarrow\left[x-1\right]\left[x+1\right]=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x^2=8^2\)
\(\Leftrightarrow x=\pm8\)
\(b,\frac{7}{x}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{1}{5}-\frac{1}{45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}=\frac{21}{45}\)
\(\Leftrightarrow\frac{7}{x}=\frac{7}{15}\)
\(\Leftrightarrow x=15\)
Vậy x = 15
Bài cuối tương tự
b) \(\frac{x-99}{5}+\frac{x-97}{7}=\frac{x-95}{9}+\frac{x-93}{11}\)
\(\Leftrightarrow\left(\frac{x-99}{5}-1\right)+\left(\frac{x-97}{7}-1\right)=\left(\frac{x-95}{9}-1\right)\)\(+\left(\frac{x-93}{11}-1\right)\)
\(\Leftrightarrow\frac{x-104}{5}+\frac{x-104}{7}-\frac{x-104}{9}-\frac{x-104}{11}=0\)
\(\Leftrightarrow\left(x-104\right)\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)=0\)
Mà \(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\ne0\)
\(\Rightarrow x-104=0\)
\(\Leftrightarrow x=104\)
Vậy ....
a) \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)
\(\Leftrightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)=\left(\frac{x+1975}{75}-1\right)\)\(+\left(\frac{x+1969}{69}-1\right)\)
\(\Leftrightarrow\frac{x+1900}{45}+\frac{x+1900}{54}-\frac{x+1900}{75}-\frac{x+1900}{69}=0\)
\(\Leftrightarrow\left(x+1900\right)\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)
Mà \(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\ne0\)
\(\Rightarrow x+1900=0\)
\(\Leftrightarrow x=-1900\)
Vậy ...
\(\frac{45}{78}+\frac{72}{88}+\frac{93}{55}\)
=\(\frac{15}{26}+\frac{9}{11}+\frac{93}{55}\)
=\(\frac{15}{26}+\frac{138}{55}\)
=\(\frac{4413}{1430}\)
\(\frac{4413}{1430}\)