Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{125^3.27^4}{25^4.9^5}\)
\(=\frac{5^9.3^{12}}{5^8.3^{10}}\)
\(=5.3^2\)
\(=45\)
Ta có:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\) và \(y-x=4\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{y-x}{12-4}=\frac{4}{8}=\frac{1}{2}\)
\(\hept{\begin{cases}\frac{x}{4}=\frac{1}{2}\Rightarrow x=\frac{1}{2}.4=2\\\frac{y}{8}=\frac{1}{2}\Rightarrow y=\frac{1}{2}.8=4\\\frac{z}{15}=\frac{1}{2}\Rightarrow z=\frac{1}{2}.15=7,5\end{cases}}\)
Vậy \(x=2;y=4;z=7,5\)
Bài 1:
\(A=\left(\frac{-5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right):\left(38\frac{1}{122}-39\frac{7}{22}\right)\)
\(=\frac{-49}{132}:\left(-\frac{879}{671}\right)=\frac{2989}{105408}\)
Bài 2:
\(\frac{4}{5}-\left(\frac{-1}{8}\right)=\frac{7}{8}-x\)
<=> \(\frac{7}{8}-x=\frac{27}{40}\)
<=> \(x=\frac{7}{8}-\frac{27}{40}=\frac{1}{5}\)
Vậy...
A = \(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)
=> 4A = \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}\)
=> 3A = \(1-\frac{1}{4^{2012}}\)
=> A = \(\frac{1-\frac{1}{4^{2012}}}{3}\)
Vậy A \(< \frac{1}{3}\)
\(\frac{4^3\cdot9^3}{8^2\cdot81^2}=\frac{2^6\cdot3^6}{2^6\cdot3^8}=\frac{1}{3^2}=\frac{1}{9}\)
\(\frac{4^3.9^3}{8^2.81^2}=\frac{\left(2^2\right)^3.\left(3^2\right)^3}{\left(2^3\right)^2.\left(3^4\right)^2}=\frac{2^6.3^6}{2^6.3^8}=\frac{1}{9}\)