Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thời gian xe máy từ A đến B với vận tốc 35km/h là
x/35 (h)
Thời gian người đó đi với vận tốc là 40km/h là
x/40 (h)
Lúc về người đó đi với vận tốc là 40km/h nên thời gian về nhanh hơn thời gian đi là 30 phút = 1/2 giờ nên
x/35 - x/40 = 1/2
=) 8x / 280 - 7x/280 = 140/280
=) x = 140
vậy AB = 140 km
Gọi vận tốc đi v1 (km/h) ; vận tốc về v2 (km/h) ; thời gian đi là t1 (h), thời gian về là t2 (h) ; Quãng đường AB là S (km)
Đổi 30 phút = 1/2 giờ
Ta có : t1 = 4 (h)
=> t2 = 4 - 1/2 = 3,5 (h)
Lại có v2 - v1 = 5
=> \(\frac{S}{t_2}-\frac{S}{t_1}=5\)
=> \(S\left(\frac{1}{t^2}-\frac{1}{t^1}\right)=5\)
=> \(S\left(\frac{1}{3.5}-\frac{1}{4}\right)=5\)
=> \(S.\frac{0,5}{14}=5\)
=> S = 140 (km)
Vậy quãng đường AB dài 140 km
Đổi 30 phút = \(\dfrac{1}{2}\) (giờ)
Gọi x (km) là quãng đường từ A đến B (ĐK : x > 0)
Thời gian đi : \(\dfrac{x}{30}\left(h\right)\)
Thời gian về : \(\dfrac{x}{40}\left(h\right)\)
Vì thời gian về ít hơn thời gian đi 30 phút nên ta có pt:
\(\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{3x}{120}+\dfrac{4x}{120}=\dfrac{60}{120}\)
\(\Leftrightarrow7x=60\)
\(\Leftrightarrow x=\dfrac{60}{7}\) (N)
Vậy : quãng đường AB dài \(\dfrac{60}{7}\left(km\right)\)
Gọi quãng đường AB là \(x\left(x>0\right)\left(km\right)\)
Thời gian xe máy đi từ A đến B là : \(\dfrac{x}{40}\left(h\right)\)
Thời gian xe máy đi từ B đến A là :\(\dfrac{x}{50}\left(h\right)\)
Do t/g về it ít hơn t/g đi là 30p \(\left(=\dfrac{1}{2}h\right)\)nên ta có :
\(\dfrac{x}{40}-\dfrac{x}{50}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{50x-40x-1000}{2000}=0\)
\(\Leftrightarrow10x=1000\)
\(\Leftrightarrow x=100\left(n\right)\)
Vậy ....
30 phút=\(\dfrac{1}{2}\)giờ
Gọi thời gian lúc đi là x(giờ; x>0)
Vì thời gian lúc đi ít hơn thời gian lúc về là 30 phút(\(\dfrac{1}{2}\)giờ)
=>Thời gian lúc về là:x+\(\dfrac{1}{2}\)(giờ)
Vận tốc của người đó lúc về nhỏ hơn vận tốc lúc đi là 6km/h
=>Vận tốc của người đó lúc về là:30-6=24(km/h)
Quãng đường lúc đi: 30x(km)
Quãng đường lúc về là: 24(x+\(\dfrac{1}{2}\))
Quãng đường đi được là không đổi nên ta có phương trình:
30x=24(x+\(\dfrac{1}{2}\))
\(\Leftrightarrow\)30x=24x+12
\(\Leftrightarrow\)30x-24x=12
\(\Leftrightarrow\)6x=12
\(\Leftrightarrow\)x=2(TMĐK)
Vậy quãng đường AB dài: 30.2=60km
Bạn tách ra nhá
Thôi, mình làm câu 1:
Vì thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch
V xuôi/V ngược = T ngược/T xuôi = 40/30 = 4/3
Ta có sơ đồ:
T xuôi: |-----|-----|-----| 30 phút
T ngược:|-----|-----|-----|-----|
T xuôi là:
30 : (4 - 3) x 3 = 90 phút = 1,5 giờ
Quãng đường là:
1,5 x 40 = 60km
Đ/s:..
Vì quãng đường AB không đổi nên ta có :Đổi: \(45ph=\dfrac{3}{4}h\)
Gọi thời gian người đó đi từ A đến B là x (h) (x > 0)
Thời gian người đó từ B về A là
\(x-\dfrac{3}{4}\left(h\right)\)
Quãng đường người đó đi từ A đến B là 30x (km)
Quãng đường người đó đi từ A đến B là:
\(40.\left(x-\dfrac{3}{4}\right)=40x-30\left(km\right)\)
Vì quãng đường AB không đổi nên ta có :\(40x-30=30x\Leftrightarrow10x=30\Leftrightarrow x=3\left(h\right)\)Độ dài quãng đường AB là:
\(30.3=90\left(km\right)\)Gọi quãng đường AB là x
=> Thời gian lúc đi là x/25
Thời gian lúc về là x/ 30
Vì thời gian về ít hơn thời gian đi là 20 phút = 1/3 h, nên ta có pt sau
x/25 - x/30 = 1/3
<=>6x/150 - 5x/ 150 = 50/ 150
<=> 6x - 5x = 50
<=> x= 50
Vậy quãng đường AB dài 50 km