K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

chỉ cần n/x x+2/x và x-2/x ko cùng nguyên đc nên x- căn 3 ; x^2+2căn 3 là nguyên

\(a+\sqrt{3}=x\left(a\text{ nguyên}\right)\Rightarrow x^2+2\sqrt{3}=a^2+2\sqrt{3}a+2\sqrt{3}+3\text{ nguyên khi:}2\sqrt{3}\left(a+1\right)\)

nguyên vô lí

7 tháng 9 2020

a,  \(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)

\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{\sqrt{x}-5}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)

\(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}-\frac{3x+4\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{x-3\sqrt{x}-10+x+4\sqrt{x}+3-3x-4\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{-x-3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\)

để P > -2 

\(\Rightarrow\frac{-\sqrt{x}-2}{\sqrt{x}-5}>-2\) đoạn này đang chưa nghĩ ra

c, \(P=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\in Z\)  \(\Rightarrow-\sqrt{x}-2⋮\sqrt{x}-5\)

=> -căn x + 5 - 7 ⋮ căn x - 5

=> -(căn x - 5) - 7 ⋮ căn x - 5 

=> 7 ⋮ x - 5 đoạn này dễ

8 tháng 9 2020

a, Với \(x\ge0;x\ne25\)thì \(P=\frac{\sqrt{x}+2}{5-\sqrt{x}}\)  đoạn này đúng rồi 

\(P>-2\)\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}>-2\)

\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}+2>0\)

\(\Leftrightarrow\frac{12-\sqrt{x}}{5-\sqrt{x}}>0\)

Xét 2 trường hợp cùng âm, cùng dương hoặc "trong trái ngoài cùng"

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}>12\\0\le\sqrt{x}< 5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>144\\0\le x< 25\end{cases}}\)

Làm luôn cho đầy đủ =)

25 tháng 6 2017

Đặt Q = \(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)+\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\)

 \(^{Q^3}\)=  3 + \(\sqrt{\frac{x}{27}}\)+3 - \(\sqrt{\frac{x}{27}}\)+3(\(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)*\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\) )(\(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)+\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\))

\(Q^3\)= 6 +3 \(\sqrt[3]{\left(3+\sqrt{\frac{x}{27}}\right)\left(3-\sqrt{\frac{x}{27}}\right)}\)\(Q\)

\(Q^3\)= 6+ 3\(\sqrt[3]{\left(3^2-\left(\sqrt{\frac{x}{27}}\right)^2\right)}\)\(Q\)

\(Q^3\)= 6 + 3 \(\sqrt[3]{9-\frac{x}{27}}\)\(Q\)

\(Q^3\)= 6 + 3\(\sqrt[3]{\frac{243-x}{27}}\)\(Q\)

\(Q^3\)= 6 + \(\sqrt[3]{243-x}\)\(Q\)

\(Q\)\(Q^2\)\(\sqrt[3]{243-x}\)) =6

\(Q\)=\(\frac{6}{Q^2-\sqrt[3]{243-x}}\)

Vì Q \(\in\)Z nên \(Q^2\)\(\in\)\(Z\), 6\(\in\)\(Z\) nên \(\sqrt[3]{243-x}\)\(\in\)\(Z\)\(Q^2\)\(\sqrt[3]{243-x}\)\(\in\)\(Ư\left(6\right)\)=\(\left\{+-1;+-2;+-3;+-6\right\}\)

Suy ra 243 -x \(\in\)+ -1; + -8 ;+-27;....

\(Q^2\)-\(\sqrt[3]{243-x}\)= 1 \(\Rightarrow\)\(Q^2\)= 1+\(\sqrt[3]{243-x}\)Vì Q\(\in\)Z nên \(\sqrt[3]{243-x}\)= 8 

Suy ra x=241 hoặc x=245

Vậy......

Không biết  mk lm đúng hay sai mong mấy bn đóng góp ý kiến . Cảm ơn nhiều ạ

25 tháng 6 2017

bạn làm sai từ cái \(\sqrt[3]{243-x}\in Z\)

3 tháng 1 2019

chu vi của một hình chữ nhật là 96cm . Nếu thêm vào chiều rộng 3cm và bớt ở chiều dài đi 3cm . Thì hình chữ nhật đó thành hình vuông . Tính diện tích hình chữ nhật đó

4 tháng 7 2019

Bài 2 xét x=0 => A =0

xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)

để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)

=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?

4 tháng 7 2019

1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)

=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)

\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)

\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)

=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

=> M=0

Vậy M=0 

27 tháng 10 2020

Theo điều kiện giả thiết, ta có:\(\sqrt{3}\ge x+y+z\Rightarrow3\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\Rightarrow xy+yz+zx\le1\)\(\Rightarrow VT\le\frac{x}{\sqrt{x^2+xy+yz+zx}}+\frac{y}{\sqrt{y^2+xy+yz+zx}}+\frac{z}{\sqrt{z^2+xy+yz+zx}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+x}.\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\)\(\le\frac{\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

18 tháng 9 2016

Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)

\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)

\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)

\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)

\(\Rightarrow T\ge1\)

Bài 2:

[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá