Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(\frac{3}{4}+\frac{3}{2}\right):\frac{7}{4}-\frac{3}{4}\)
\(=\left(\frac{3}{4}+\frac{6}{4}\right).\frac{4}{7}-\frac{3}{4}\)
\(=\frac{9}{4}.\frac{4}{7}-\frac{3}{4}\)
\(=\frac{9}{7}-\frac{3}{4}\)
\(=\frac{36}{28}-\frac{21}{28}\)
\(=\frac{15}{28}\)
\(b,\left(-5\right)^2.\frac{7}{45}-\left(-5\right)^2.\frac{11}{45}\)
\(=\left(-5\right)^2.\left(\frac{7}{45}-\frac{11}{45}\right)\)
\(=\left(-5\right)^2.\frac{-4}{45}\)
\(=25.\frac{-4}{45}\)
\(=\frac{-100}{45}\)
\(=\frac{20}{9}\)
#Chúc em học tốt
a) 3/4x16/9-7/5:(-21/20)
=4/3-(-4/3)
=8/3
b)=7/3-1/3x[-3/2+(2/3+2)]
=7/3-1/3x[-3/2+8/3]
=7/3-1/3x7/6
=7/3-7/18
=35/18
c)=(20+37/4):9/4
=117/4:9/4
=13
d)=6-14/5x25/8-8/5:1/4
=6-35/4-32/5
=-11/4-32/5
=-183/20
\(\frac{3}{5\cdot7}+\frac{3}{7\cdot9}+...+\frac{5}{53\cdot55}\)
\(=\frac{3}{2}\cdot\left(\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{53\cdot55}\right)\)
\(=\frac{3}{2}\cdot\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{53}-\frac{1}{55}\right)\)
\(=\frac{3}{2}\cdot\left(\frac{1}{5}-\frac{1}{55}\right)\)
\(=\frac{3}{2}\cdot\left(\frac{11}{55}-\frac{1}{55}\right)\)
\(=\frac{3}{2}\cdot\frac{10}{55}\)
\(=\frac{3}{2}\cdot\frac{2}{11}\)
\(=\frac{3}{11}\)
b) \(\hept{\begin{cases}xy+x+1=7y\left(1\right)\\x^2y^2+xy+1=13y^2=1\left(2\right)\end{cases}}\)
từ (2) ta có y khác 0 do đó
hệ trở thành \(\hept{\begin{cases}x+\frac{x}{y}+\frac{1}{y}=7\\x^2+\frac{x}{y}+\frac{1}{y^2}=13\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{y}\right)+\frac{x}{y}=7\\\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=13\end{cases}}}\)
đặt a=\(x+\frac{1}{y};b=\frac{x}{y}\)
hệ viết được dưới dạng \(\hept{\begin{cases}a+b=7\\a^2-b=13\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=17\\a^2+a-20=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-5\\b=12\end{cases}}}\)hay \(\hept{\begin{cases}a=4\\b=3\end{cases}}\)
với a=-5; b=12 ta được \(\hept{\begin{cases}x+\frac{1}{y}=5\\x\cdot\frac{1}{y}=12\end{cases}}\)
(x,\(\frac{1}{y}\)là nghiệm phương trình t2+5t+12=0, vô nghiệm)
với a=4, b=3 ta được \(\hept{\begin{cases}x+\frac{1}{y}=4\\x\cdot\frac{1}{y}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)hoặc \(\hept{\begin{cases}x=1\\y=\frac{1}{3}\end{cases}}\)
vậy hệ đã cho 2 nghiệm (x;y)=(3;1);(\(\left(1;\frac{1}{3}\right)\)
a) điều kiện x\(\ne\)1 phương trình đã cho
\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^3-3\frac{x^2}{x-1}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}-1=-8\)
\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^3+\frac{3x^2}{x-1}-1=\left(-2\right)^3\)
\(\Leftrightarrow\left(\frac{x^2}{x-1}-1\right)^3=\left(-2\right)^3\Leftrightarrow\frac{x^2}{x-1}=-2\)
\(\Leftrightarrow\frac{x^2}{x-1}+1=0\Leftrightarrow x^2+x-1=0\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)(thỏa mãn)
vậy x=\(\frac{1\pm\sqrt{5}}{2}\)là nghiệm của phương trình
3/7 :2=3 /14 nhé
\(\frac{3}{7}:2=\frac{3}{14}.\)
Đúng 100% luôn!
Ai tk cho mình mình tk lại.