Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có:
\(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{\left(x-3\right)\times x}=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x-3}-\frac{1}{x}=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x}=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{x}=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}\Leftrightarrow x=3\)
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\) (dấu . là nhân nhé)
=> \(\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right):3=\frac{101}{1540}\)
=> \(\left(\frac{1}{5}-\frac{1}{x+3}\right):3=\frac{101}{1540}\)
=> \(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}\cdot3=\frac{303}{1540}\)
=> \(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
=> \(x+3=308\Rightarrow x=308-3=305\)
\(\frac{1}{5x8}+\frac{1}{8x11}+...+\frac{1}{Xx\left(X+3\right)}=\frac{101}{1540}\)
<=>\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{101}{1540}\)
<=>\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}\)
<=>\(\frac{x-2}{5x+15}=\frac{101}{1540}\)
<=>1540x-3080=505x+1515
<=>1035x=4595
<=>x=919/207
a,A=1/5-1/8+1/8-1/11+...+1/2006-1/2009=1/5-1/2009=2004/10045
b,B=1/4x(4/6x10+4/10x14+...+4/402x406)
=1/4x(1/6-1/10+1/10-1/14+...+1/402-1/406)
=1/4x(1/6-1/406)
=1/4x100/609=25/609
c,C=2x(5/7x12+5/12x17+...+5/502x507)
=2x(1/7-1/12+1/12-1/17+...+1/502-1/507)
=2x(1/7-1/507)
=2x500/3549
=1000/3549
Xin lỗi vì ko viết được rõ ràng.Mong bạn thông cảm. Chúc bạn học tốt.
\(\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{2006\times2009}\)
\(=\frac{1}{3}\left(\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{2006\times2009}\right)\)
\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2006}-\frac{1}{2009}\right)\)
\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{2009}\right)\)
\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{2009}\right)\)
\(=\frac{1}{3}\left(\frac{2009}{10045}-\frac{5}{10045}\right)\)
\(=\frac{1}{3}.\frac{2004}{10045}=\frac{2004}{30135}\)
\(3.\left(x-\frac{1}{5}\right)-7.\left(\frac{5}{14}-3\right)=20\)
\(3.\left(x-\frac{1}{5}\right)-7.\frac{-37}{14}=20\)
\(3.\left(x-\frac{1}{5}\right)-\frac{-37}{2}=20\)
\(3.\left(x-\frac{1}{5}\right)=20+\frac{-37}{2}\)
\(3.\left(x-\frac{1}{5}\right)=\frac{3}{2}\)
\(x-\frac{1}{5}=\frac{3}{2}:3\)
\(x-\frac{1}{5}=\frac{1}{2}\)
\(x=\frac{1}{2}+\frac{1}{5}\)
\(x=\frac{7}{10}\)
\(B=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{26\cdot29}\)
\(B=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{29}\)
\(B=\dfrac{1}{2}-\dfrac{1}{29}\)
\(B=\dfrac{27}{58}\)
B= 3/2x5 + 3/5x8+ 3/8x11 + ... + 3/26x29
B= 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/26 - 1/29
B= 1/2-1/29
B=27/58
Biết làm câu số 3
Chứng tỏ rằng tổng bốn số tự nhiên liên tiếp là một số không chia hết cho 4:
Giải
4 = 22
=> Số chia hết cho 4 phải chia hết cho 2 và số chia hết cho 2 có tận cùng là: 0 , 2 , 4 , 6 , 8
Gọi 4 số tự nhiên lần lượt: a , b , c ,d
Ta có:
a + b + c + d = ..............................
Tới đây bí rồi! Gợi ý thôi! Đừng trách mình nhé
Mình làm mấy câu trước nhé!
\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
\(x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)=1\)
\(\Rightarrow x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)=1\)
\(\Rightarrow x-\left(\frac{1}{1}-\frac{1}{10}\right)=1\)
\(\Rightarrow x-\frac{9}{10}=1\Leftrightarrow x=1+\frac{9}{10}=\frac{19}{10}\)
Ta có : \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+......+\frac{3}{\left(x-3\right)x}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+.....+\frac{1}{x-3}-\frac{1}{x}\)
\(=\frac{1}{2}-\frac{1}{x}\)
\(=\frac{x}{2x}-\frac{2}{2x}=\frac{x-2}{2x}\)