K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

\(\frac{1}{x^7}=1< =>x^7=1=>x=1.\\ \) :V

8 tháng 6 2018

em xin lỗi ,em mới lên lớp 6 thôi

8 tháng 6 2018

a=\(\left(\frac{\left(x+1\right)^2-\left(x-1\right)^2+\left(x-1\right)^2-2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\cdot\frac{x+2017}{x}\)

a=\(\frac{\left(x+1\right)\left(x+1-2\right)}{\left(x+1\right)\left(x-1\right)}\cdot\frac{x+2017}{x}\)

a=0

19 tháng 11 2023

ĐKXĐ: \(\left\{{}\begin{matrix}2x+5>=0\\4-2x>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x>=-5\\2x< =4\end{matrix}\right.\Leftrightarrow-\dfrac{5}{2}< =x< =2\)

\(x^2+\sqrt{2x+5}+\sqrt{4-2x}=4x-1\)

=>\(x^2-4+\sqrt{2x+5}-3+\sqrt{4-2x}=4x-1-7\)

=>\(\left(x-2\right)\left(x+2\right)+\dfrac{2x+5-9}{\sqrt{2x+5}+3}+\sqrt{4-2x}=4x-8\)

=>\(\left(x-2\right)\left[\left(x+2\right)+\dfrac{2}{\sqrt{2x+5}+3}-4\right]+\sqrt{4-2x}=0\)

=>\(-\left(2-x\right)\left[\left(x-2\right)+\dfrac{2}{\sqrt{2x+5}+3}\right]+\sqrt{2\left(2-x\right)}=0\)

=>\(\sqrt{2-x}\left[-\sqrt{2-x}\left(x-2+\dfrac{2}{\sqrt{2x+5}+3}\right)+\sqrt{2}\right]=0\)

=>\(\sqrt{2-x}=0\)

=>x=2(nhận)

22 tháng 6 2016

thiếu đ/k  cửa  x;y;z

từ trên => x=y=z=1

20 tháng 8 2019

chịu thua

9 tháng 4 2016

mk chưa đến lớp 9

9 tháng 4 2016

quy đồng rồi binh phương hai lần

21 tháng 2 2016

Mình sẽ hướng dẫn các bạn các cách khác nhau cho bài này!!!

gt \(\Leftrightarrow\sqrt{\frac{2x}{y}}\left(2xy-1\right)=2xy+1\Leftrightarrow\sqrt{\frac{2x}{y}}\left(2x-\frac{1}{y}\right)=2x+\frac{1}{y}\)\(\Leftrightarrow\)\(\frac{2x}{y}\left(2x-\frac{1}{y}\right)^2=\left(2x+\frac{1}{y}\right)^2\) (1)

Cách 1: Đặt \(2x+\frac{1}{y}=a\) và \(2x-\frac{1}{y}=b\) nên (1)\(\Leftrightarrow\) \(\frac{2x}{y}b^2=a^2\)mà \(a^2-b^2=\frac{8x}{y}\Leftrightarrow\)\(\frac{a^2-b^2}{4}=\frac{2x}{y}\)

\(\Leftrightarrow\)\(\frac{a^2-b^2}{4}b^2=a^2\Leftrightarrow4a^2=\left(a^2-b^2\right)b^2\Leftrightarrow b^4-a^2b^2+4a^2=0\)

Coi là phương trình bậc hai ẩn b2 ta có: \(\Delta=a^4-16a^2=a^2\left(a-4\right)\left(a+4\right)\)để a,b tồn tại thì

\(\Delta\ge0\Leftrightarrow a\ge4\) vì a dương 

3 tháng 8 2016

P đạt giá trị nhỏ nhất \(\Leftrightarrow\frac{1}{P}\)đạt giá trị lớn nhất.

Xét : \(\frac{2}{P}=\frac{x^2+x+1}{x}=x+\frac{1}{x}+1\). Áp dụng bđt Cauchy với hai số không âm x và 1/x được : 

\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Rightarrow\frac{2}{P}\ge3\Leftrightarrow P\le\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge0\\x=\frac{1}{x}\end{cases}\Leftrightarrow}x=1\)

Vậy Min P = 2/3 tại x = 1

3 tháng 8 2016

GTNN

\(P=\frac{2x}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\ge0\)

GTLN

\(P=\frac{2}{\frac{x^2+x+1}{x}}=\frac{2}{x+\frac{1}{x}+1}\le\frac{2}{2\sqrt{x.\frac{1}{x}}+1}=\frac{2}{3}\)

Dấu bằng xảy ra khi \(x=\frac{1}{x}\Leftrightarrow x=1\)