Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2016-x}{2017}\)+\(\frac{2017-x}{2016}\)+2=\(\frac{2016}{2017-x}\)+\(\frac{2017}{2016-x}\)+2
\(\frac{4033-x}{2017}\)+\(\frac{4033-x}{2016}\)=\(\frac{4033-x}{2017-x}\)+\(\frac{4033-x}{2016-x}\)
(4033-x)(\(\frac{1}{2017}\)+\(\frac{1}{2016}\)-\(\frac{1}{2017-x}\)-\(\frac{1}{2016-x}\))=0
=>\(\hept{\begin{cases}4033-x=0\\\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2017-x}-\frac{1}{2016-x}\end{cases}}=0\)
=>x=4033
x=0
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
\(A=8x^3-\frac{1}{125}\)
\(A=\left(2x\right)^3-\left(\frac{1}{5}\right)^3\)
\(A=\left(2x-\frac{1}{5}\right)\left(4x^2+\frac{2}{5}x+\frac{1}{25}\right)\)
\(B=\left(x^2\right)^3-\left(\frac{1}{4}y\right)^3\)
\(B=\left(x^2-\frac{1}{4}y\right)\left(x^2+\frac{1}{4}x^2y+\frac{1}{16}y^2\right)\)
Bài 1:
a: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)
b: \(=\dfrac{xy\left(x^2+y^2\right)}{x^4y}\cdot\dfrac{1}{x^2+y^2}=\dfrac{x}{x^4}=\dfrac{1}{x^3}\)
c: Đề thiếu rồi bạn
a/ ĐK x-1 khác 0 ; x^2+x khác 0 ; x^3-x khác 0 ; 1-x^2 khác 0
=> x khác {1;0;-1}
b/ \(B=\frac{1}{x-1}-\frac{x^3-x}{x^2+x}.\left(\frac{1}{x^2-2x+1}+\frac{1}{1-x^2}\right)\)
\(=\frac{1}{x-1}-\frac{x\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}.\left(\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(1+x\right)\left(1-x\right)}\right)\)
\(=\frac{1}{x-1}-\left(x-1\right).\left(\frac{1+x-x+1}{\left(x-1\right)^2\left(1+x\right)}\right)=\frac{1}{x-1}-\frac{1}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+1-1}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x^2-1}\)
a) \(\frac{x-1}{x+1}-\frac{x+1}{x-1}+\frac{4}{x^2-1}\left(ĐK:x\ne\pm1\right)\)
\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2+4}{\left(x-1\right)\left(x+1\right)}\)
\(\frac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=-\frac{4}{x+1}\)
b) \(\frac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\left(ĐK:x,y\ne0\right)\)
\(=\frac{xy\left(x^2+y^2\right)}{x^4y}\cdot\frac{1}{x^2+y^2}\)
\(=\frac{1}{x^3}\)
a) \(\frac{x^2+5x+6}{x^2+7x+12}\)=\(\frac{x^2+2x+3x+6}{x^2+3x+4x+12}\)=\(\frac{x\left(x+2\right)+3\left(x+2\right)}{x\left(x+3\right)+4\left(x+3\right)}\)=\(\frac{\left(x+3\right)\left(x+2\right)}{\left(x+4\right)\left(x+3\right)}\)
b) \(\frac{7x^2+14x+7}{3x^2+3x}\)=\(\frac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)=\(\frac{7\left(x+1\right)^2}{3x\left(x+1\right)}\)=\(\frac{7\left(x+1\right)\left(x+1\right)}{3x\left(x+1\right)}\)=\(\frac{7\left(x+1\right)}{3x}\)
trừ 1 vào mỗi phân thức ở hai vế
\(\left(x-2016\right)\left(\frac{1}{1953}+\frac{1}{1955}+\frac{1}{1957}+\frac{1}{1959}-\frac{1}{63}-\frac{1}{61}-\frac{1}{59}-\frac{1}{57}\right)=0\)
vì 1/1953 + 1/1955 + 1/1957 + 1/1959 -1/63 -1/61-1/59-1/57 khác0
=> x-2016=0 => x=2016
bạn có thể làm rỏ hơn được không.mình cảm ơn bạn nhiều
Bạn tự nghĩ ra đấy à?