Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(14:\frac{0,4x+0,6}{x}=7\)
\(\frac{0,4x+0,6}{x}=2\)
0,4x + 0,6 = 2.x
2x - 0,4x = 0,6
1,6x = 0,6
x = 0,375
b) \(\left(160\%+\frac{2}{3}x-x\right).12=660\)
\(\left(160\%+\frac{2}{3}x-x\right)=55\)
\(x\left(\frac{2}{3}-1\right)=53,4\)
\(-\frac{1}{3}x=\frac{267}{5}\)
\(x=\frac{267}{5}.\frac{3}{-1}\)
\(x=-160,2\)
c) \(1:\frac{1.2.3.4.....31}{2.2.2.3.2.4.....2.32}=2^x\)
\(1:\frac{1.2.3.4.....31}{2^{31}.2.3.4.....31.2^5}=2^x\)
\(1:\frac{1}{2^{36}}=2^x\)
\(2^{36}=2^x\)
\(x=36\)
Đặt A= \(\frac{1}{4^2}\) + \(\frac{1}{6^2}\) + \(\frac{1}{8^2}\) +...+ \(\frac{1}{\left(2n\right)^2}\)
A= \(\frac{1}{2^2.2^2}\) + \(\frac{1}{2^2.3^2}\) +...+ \(\frac{1}{2^2.n^2}\)
A= \(\frac{1}{2^2}\).( \(\frac{1}{2^2}\) + \(\frac{1}{3^2}\) + ...+ \(\frac{1}{n^2}\))
A< \(\frac{1}{2^2}\) . ( \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) +...+ \(\frac{1}{\left(n-1\right)n}\)
A< \(\frac{1}{4}\) . ( 1-\(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) +...+ \(\frac{1}{n-1}\) - \(\frac{1}{n}\) )
A< \(\frac{1}{4}\) . (1-\(\frac{1}{n}\)) = \(\frac{1}{4}\) - \(\frac{1}{4n}\) <\(\frac{1}{4}\) => A <\(\frac{1}{4}\)