K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

có cần phải giải ra ko

\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(=\frac{81}{243}+\frac{27}{243}+\frac{9}{243}+\frac{3}{243}+\frac{1}{243}\)

\(=\frac{121}{243}\)

mk ko bít đúng hay ko nữa có gì mấy bạn góp ý cho mình nhé ! Thanks

10 tháng 9 2017

\(G=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

\(3G=3+1+\frac{1}{3}+...+\frac{1}{3^4}\)

\(3G-G=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)

\(2G=3-\frac{1}{3^5}\)

\(2G=3-\frac{1}{243}\)

\(2G=\frac{729}{243}-\frac{1}{243}\)

\(G=\frac{728}{243}:2\)

\(G=\frac{364}{243}\)

\(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{x.\left(x+1\right)}=\frac{6042}{2015}\)

\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{6042}{2015}\)

\(1-\frac{1}{x+1}=\frac{6042}{2015}:3\)

\(1-\frac{1}{x-1}=\frac{2014}{2015}\)

\(\frac{1}{x-1}=1-\frac{2014}{2015}\)

\(\frac{1}{x-1}=\frac{1}{2015}\)

\(\Rightarrow x-1=2015\)

\(\Rightarrow x=2016\)

5 tháng 8 2016

\(\text{Đặt : }A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\Rightarrow3A-A=1-\frac{1}{729}\)

\(\Rightarrow2A=\frac{728}{729}\)

\(\Rightarrow A=\frac{728}{729}:2=\frac{364}{729}\)

5 tháng 8 2016

\(=\frac{364}{729}\)

12 tháng 6 2015

Gọi tong trên là A

\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{81}+\frac{1}{243}+\frac{1}{7129}+\frac{1}{2187}\)

\(3A=\frac{1}{3}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{729}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}-\frac{1}{3}-\frac{1}{9}-\frac{1}{27}-\frac{1}{81}-\frac{1}{243}-\frac{1}{729}-\frac{1}{2187}\)

\(2A=1-\frac{1}{2187}\)

\(2A=\frac{2186}{2187}\)

\(A=\frac{2186}{2187}:2\)

\(A=\frac{1093}{2187}\)

Vậy tổng A = \(\frac{1093}{2187}\)

12 tháng 6 2015

\(3y=3\cdot\frac{1}{1}+3\cdot\frac{1}{3}+3\cdot\frac{1}{9}+...+3\cdot\frac{1}{729}+3\cdot\frac{1}{2187}\)

     \(=3+\frac{1}{1}+\frac{1}{3}...+\frac{1}{729}\)

=> \(3y-y=3+\frac{1}{1}+\frac{1}{3}+..+\frac{1}{729}-\frac{1}{1}-\frac{1}{3}-...-\frac{1}{2187}\)

<=> 2y = 3- 1/2187

=> y = \(\frac{3-\frac{1}{2187}}{2}\)

31 tháng 8 2016

không có tổng hả bạn bạn xem  rõ lại 

31 tháng 8 2016

Ko có

31 tháng 8 2016

Đổi : 1,26 km = 126 m

Tổng số phần bằng nhau là :

3 + 4 = 7 ( phần )

Nửa chu vi hình chữ nhật là :

126 : 2 = 63 ( m )

Chiều dài là :

63 : 7 x 4 = 36 ( m )

Chiều rộng là :

63 : 7 x 3 = 27 ( m )

Diện tích hình chữ nhật là :

36 x 27 = 972 ( m^2 )

Đổi : 972 m^2 = 0,0972 hm^2

bạn đánh sai đề rồi

22 tháng 6 2017

dễ mk nhìn là biết

22 tháng 6 2017

Đặt A = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

3A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

3A - A = (\(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)) - (\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\))

2A = 1 - \(\frac{1}{729}\) = \(\frac{728}{729}\)

A = \(\frac{728}{729}:2=\frac{364}{729}\)

11 tháng 7 2017

A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729

A * 3= 3* ( 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)

A* 3 = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243

A * 3 - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - 1/3 - 1/9 - 1/27 - 1/81 - 1/243 - 1/729

A * 2     = 1 - 1/ 729

A * 2     = 1/728

A          = 1/728 : 2

A          = 2/728

Nếu không quy đồng Mẫu thì ta quy đồng Tử

P/S: 2/728 VÀ 1/2

1/2 = 1*2/ 2*2

     = 2/4 

So sánh 2/4 và 2/278 ta thấy phân số 2/4 lớn hơn.

Vậy 1/2 > A

                 Đ/S: A = 2/728

                        1/2 > A

11 tháng 7 2017

\(A=\frac{1}{3}+\frac{1}{3x3}+\frac{1}{3x3x3}+\frac{1}{3x3x3x3}+\frac{1}{3x3x3x3x3}+\frac{1}{3x3x3x3x3x3}.\)

\(3xA=1+\frac{1}{3}+\frac{1}{3x3}+\frac{1}{3x3x3}+\frac{1}{3x3x3x3}+\frac{1}{3x3x3x3x3}\)

\(2xA=3xA-A=1-\frac{1}{3x3x3x3x3x3}\)

\(A=\frac{1}{2}-\frac{1}{3x3x3x3x3x3}< \frac{1}{2}\)