K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

Bài làm:

a) \(A=\left(\sqrt{3}+1\right)^2+\frac{5}{4}\sqrt{48}-\frac{2}{\sqrt{3+1}}\)

\(A=3+2\sqrt{3}+1+\sqrt{\frac{25.48}{16}}-\frac{2}{\sqrt{4}}\)

\(A=4+2\sqrt{3}+\sqrt{25.3}-\frac{2}{2}\)

\(A=4+2\sqrt{3}+5\sqrt{3}-1\)

\(A=3+7\sqrt{3}\)

b) \(\frac{4}{3-\sqrt{5}}-\frac{3}{\sqrt{5}+\sqrt{2}}-\frac{1}{\sqrt{2}-1}\)

\(=\frac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(A=\frac{4\left(3+\sqrt{5}\right)}{9-5}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}-\frac{\sqrt{2}+1}{2-1}\)

\(A=3+\sqrt{5}-\sqrt{5}+\sqrt{2}-\sqrt{2}-1\)

\(A=2\)

17 tháng 8 2020

Phần b mình viết nhầm tên thành A, bn sửa thành B nhé

c) \(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)

\(C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(C=\sqrt{3}-1-2-\sqrt{3}\)

\(C=-3\)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

3 tháng 8 2017

Ta có :

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

Ta có:

\(\frac{1}{\sqrt{x}+\sqrt{x-1}}=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}=\sqrt{x}-\sqrt{x-1}\)

Do đó:

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

\(\Leftrightarrow A=\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+...+\sqrt{n-1}+\sqrt{n}\)

\(\Leftrightarrow A=\sqrt{n}-1\left(dpcm\right)\)

9 tháng 1 2016

Yêu cầu tìm Txd và R/g y

24 tháng 7 2016

Trước hết , ta cần chứng minh \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)(*) (Bạn tự chứng minh)

Đặt \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

\(\Rightarrow2A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\)

\(>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)

Áp dụng (*) :\(\Rightarrow2A>\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{5}-\sqrt{4}\right)+...+\left(\sqrt{80}-\sqrt{79}\right)+\left(\sqrt{81}-\sqrt{80}\right)\)

\(\Rightarrow2A>\sqrt{81}-1=8\Rightarrow A>4\)(đpcm)

28 tháng 3 2018

\(A=\left(\frac{2+\sqrt{x}}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{2-\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right)\) \(:\left(2-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(A=\left[\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right]\) 

 \(:\left[\frac{2\left(\sqrt{x}+1\right)-\sqrt{x}}{\sqrt{x}+1}\right]\)

\(A=\left[\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right]\)

\(:\left[\frac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}+1}\right]\)

\(A=\left[\frac{\sqrt{x}+2+x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right]\)  \(:\left[\frac{\sqrt{x}+2}{\sqrt{x}+1}\right]\)

\(A=\left[\frac{\sqrt{x}+x-7-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]:\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

\(A=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

\(A=\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)