Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em mới lớp 7 nên không rành lắm về bất đẳng thức ạ :((
Ta có :\(a.b=1< =>a=\frac{1}{b}\)
Áp dụng bất đẳng thức :
Ta được \(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
\(\ge\left(a+b+1\right)\left(2ab\right)+\frac{4}{a+b}\)
\(=\left(a+b+1\right).2+\frac{4}{a+b}\)
Áp dụng Bất đẳng thức Cauchy cho 2 số không âm
\(2\left(a+b+1\right)+\frac{4}{a+b}\ge2\sqrt[2]{\left[2\left(a+b\right)+2\right].\frac{4}{a+b}}\)
\(=2\sqrt[2]{\frac{8\left(a+b\right)+8}{a+b}}=2\sqrt[2]{\frac{8\left(\frac{1}{b}+b\right)+8}{\frac{1}{b}+b}}\left(+\right)\)
Áp dụng bất đẳng thức Cauchy cho 2 số không âm :
\(\frac{1}{b}+b\ge2\sqrt[2]{\frac{1}{b}.b}=2\)
Khi đó \(\left(+\right)< =>2\sqrt[2]{\frac{8.2+8}{2}}=2\sqrt[2]{12}=\sqrt[2]{48}\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=1\)
Vậy \(Min_A=\sqrt{48}\)khi \(a=b=1\)
\(\frac{1}{11xy}\sqrt{\frac{121x^2}{y^6}}=\frac{1}{11xy}.\frac{11x}{y^3}=\frac{1}{y^4}\)