Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{10x-12y}{3}=\frac{12y-15z}{4}=\frac{15z-10x}{5}=\frac{10x-12y+12y-15z+15z-10x}{3+4+5}=\frac{0}{12}=0\)
=>\(10x-12y=12y-15z=15z-10x=0\)
- \(10x-12y=0\Leftrightarrow10x=12y\Leftrightarrow\frac{x}{12}=\frac{y}{10}\Leftrightarrow\frac{x}{6}=\frac{y}{5}\left(1\right)\)
- \(12y-15z=0\Leftrightarrow12y=15z\Leftrightarrow\frac{y}{15}=\frac{z}{12}\Leftrightarrow\frac{y}{5}=\frac{z}{4}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{5}=\frac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{10x-12y}{3}=\frac{12y-15z}{4}=\frac{15z-10x}{5}=\frac{10x-12y+12y-15z+15z-10x}{3+4+5}=\frac{0}{12}=0\)
=>\(10x-12y=12y-15z=15z-10x=0\)
- \(10x-12y=0\Leftrightarrow10x=12y\Leftrightarrow\frac{x}{12}=\frac{y}{10}\Leftrightarrow\frac{x}{6}=\frac{y}{5}\)(1)
- \(12y-15z=0\Leftrightarrow12y=15z\Leftrightarrow\frac{y}{15}=\frac{z}{12}\Leftrightarrow\frac{y}{5}=\frac{z}{4}\) (2)
Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{5}=\frac{z}{4}\) (đpcm)
1) 1 giá trị là 1
3) ko
4)\(\dfrac{6.29^{32}}{2.29^{20}}=3.29^{12}\)
Đặt \(\frac{x}{3}=\frac{y}{5}=k\) \(\Rightarrow x=3k;y=5k\)
Thay vào 2 biểu thức ta có:
\(M=\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5\left(3k\right)^2+3\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}\)
\(=\frac{45k^2+75k^2}{90k^2-75k^2}\)
\(=\frac{120k^2}{15k^2}=8\)
\(N=\frac{3x-12y}{7y-11x}=\frac{3.3k-12.5k}{7.5k-11.3k}=\frac{9k-60k}{35k-33k}\)
\(=\frac{-51k}{2k}=\frac{-51}{2}\)
Vậy \(M=8;N=\frac{-51}{2}\)
8/\(35x=21y=15z\)=>\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\)
Áp dụng t/c của dãy tỉ số ằng nhau,ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y-z}{3+5-7}=\dfrac{9}{1}=9\)
=>x=27;y=45;z=63
9/\(10x=6y=5z\)=>\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}\)
Áp dụng t/c của dãy tỉ số ằng nhau,ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{24}{2}=12\)
=>x=36;y=60;z=72