Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{y+z}{yz}=\dfrac{z+x}{zx}\\ \Rightarrow\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{z}\\ \Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\\ \Rightarrow x=y=z\)
\(\Rightarrow P=\dfrac{xy+yz+zx}{x^2+y^2+z^2}=\dfrac{x^2+x^2+x^2}{x^2+x^2+x^2}=1\)
Bài làm:
Dễ thấy a,b,c khác 0
Ta có: \(\frac{xy}{x+y}=\frac{12}{7}\Leftrightarrow\frac{x+y}{xy}=\frac{7}{12}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{7}{12}\) (1)
Tương tự ta tách ra được: \(\frac{1}{y}+\frac{1}{z}=-\frac{1}{6}\) (2) ; \(\frac{1}{z}+\frac{1}{x}=-\frac{1}{4}\) (3)
Cộng vế (1);(2) và (3) lại ta được:
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{12}\) (4)
Cộng vế (1) và (2) lại ta được: \(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}=\frac{5}{12}\)
Thay (4) vào ta được: \(\frac{1}{y}+\frac{1}{12}=\frac{5}{12}\Leftrightarrow\frac{1}{y}=\frac{1}{3}\Rightarrow y=3\)
Từ đó ta dễ dàng tính được: \(\hept{\begin{cases}\frac{1}{x}=\frac{7}{12}-\frac{1}{3}=\frac{1}{4}\\\frac{1}{z}=-\frac{1}{6}-\frac{1}{3}=-\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(4;3;-2\right)\)
từ giả thiết : xy + yz = 8 ; yz + zx = 9 ; zx + xy = 5
=> xy + yz + zx = 11
=> xy = 2 ; yz = 6 ; zx = 3
=>( xyz)2 = 36 => xyz = \(\pm\)6
+ nếu xyz = 6 thì : x = 1 ; y = 2; z = 3
+ nếu xyz = -6 thì : x = -1 ; y = -2 ; z = -3
\(xy+yz=8;yz+zx=9;zx+xy=5\)
\(\Rightarrow xy+yz+yz+zx+zx+xy=8+9+5\)
\(\Leftrightarrow2xy+2yz+2xz=22\)
\(\Leftrightarrow2\left(xy+yz+xz\right)=22\)
\(\Leftrightarrow xy+yz+xz=11\)
\(\Rightarrow\hept{\begin{cases}xz=11-8\\xy=11-9\\yz=11-5\end{cases}\Rightarrow\hept{\begin{cases}xz=3\\xy=2\\yz=6\end{cases}}}\Rightarrow xz\cdot xy\cdot yz=3\cdot2\cdot6=36\)
\(\Leftrightarrow\left(xyz\right)^2=36=\left(\pm6\right)^2\)
TH1: \(xyz=6\)
\(\Rightarrow\hept{\begin{cases}xyz:xz=y\\xyz:xy=z\\xyz:yz=x\end{cases}\Rightarrow\hept{\begin{cases}y=6:3\\z=6:2\\x=6:6\end{cases}\Rightarrow}\hept{\begin{cases}y=2\\z=3\\x=1\end{cases}}}\)
TH2: \(xyz=-6\)
\(\Rightarrow\hept{\begin{cases}xyz:xz=y\\xyz:xy=z\\xyz:yz=x\end{cases}\Rightarrow\hept{\begin{cases}y=-6:3\\z=-6:2\\x=-6:6\end{cases}\Rightarrow}\hept{\begin{cases}y=-2\\z=-3\\x=-1\end{cases}}}\)
Vậy 2 tập nghiệm của x, y, z là (1;2;3) và (-1;-2;-3)
Giải:
Nhân từng vế ba đẳng thức ta được : \((xyz)^2=36xyz\)
Nếu một trong các số x,y,z bằng 0 thì hai số còn lại cũng bằng 0
Nếu cả ba số x,y,z \(\ne\)0 thì chia hai vế cho xyz được xyz = 36.Từ xyz = 36 và xy = z ta được z2 = 36 nên z = \(\pm6\). Từ xyz = 36 và yz = 4x ta được 4x2 = 36 nên x = \(\pm3\). Từ xyz = 36 và zx = 9y , ta được 9y2 = 36 nên y = \(\pm2\)
Nếu z = 6 thì x và y cùng dấu nên x = 3 , y = 2 , hoặc x = -3 , y = -2.Nếu z = -6 thì a và b trái dấu nên x = 3 , y = -2 hoặc x = -3 , y = 2
Tóm lại,có 5 bộ số \((x;y;z)\)thỏa mãn bài toán là :
\((0;0;0),(3;2;6),(-3;-2;6),(3;-2;-6),(-3;2;-6)\)
xy =z; yz = 4x; zx =9y
=> xy.yz.zx = z.4x.9y
(xyz)2 = 36xyz
=> xyz =36
( đến đây mik lm tắt nhé)
=> x= \(\pm\)3
y = \(\pm\)2
z = \(\pm\)6
Bn tham khảo nha :
https://olm.vn/hoi-dap/detail/55561591911.html
* Bn vô thống kê hỏi đáp của mik xem thì link mới hoạt động *
~ Hok tốt ~
#Gumball
2x=3y=4z =k
suy ra x=k/2; y=k/3, z=k/4
mà xy + yz + zx = 6
suy ra \(\frac{k^2}{6}+\frac{k^2}{12}+\frac{k^2}{8}=6\Rightarrow k^2.\frac{3}{8}=6\Rightarrow k^2=16\Rightarrow k\in\left\{4;-4\right\}\)
Với k = 4 suy ra x =2; y=4/3; z=1
Với k =- 4 suy ra x =-2; y=-4/3; z=-1
Ta có :
\(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{4}\)
\(3y=4z\Leftrightarrow\frac{z}{3}=\frac{y}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Ta có :
\(\left(\frac{x}{6}\right)^2=\frac{x}{6}.\frac{x}{6}=\frac{x}{6}.\frac{y}{4}=\frac{y}{4}.\frac{z}{3}=\frac{z}{3}.\frac{y}{6}\)
\(\Leftrightarrow\)\(\left(\frac{x}{6}\right)^2\)\(=\frac{xy}{24}=\frac{yz}{12}=\frac{zx}{18}=\frac{xy+yz+zx}{24+12+18}=\frac{1}{9}\)\(\left(\text{T/c dãy tỉ số bằng nhau}\right)\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)\(=\pm\frac{1}{3}\)
\(P=\sqrt{y}\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}=\left(6-\sqrt{x}-\sqrt{z}\right)\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}\)
\(P=-x+6\sqrt{x}-2z+12z=-\left(\sqrt{x}-3\right)^2-2\left(\sqrt{z}-3\right)^2+27\le27\)
\(P_{max}=27\) khi \(\left(x;y;z\right)=\left(9;0;9\right)\)
Ta có \(x+y+z=1\Rightarrow x+y=1-z,\) ta có:
\(\frac{x+y}{\sqrt{xy+z}}=\frac{1-z}{\sqrt{xy+1-x-y}}=\frac{1-z}{\sqrt{\left(1-x\right)\left(1-y\right)}}\)
\(\frac{y+z}{\sqrt{yz+x}}=\frac{1-x}{\sqrt{yz+1-y-z}}=\frac{1-x}{\sqrt{\left(1-y\right)\left(1-z\right)}}\)
\(\frac{z+x}{\sqrt{zx+y}}=\frac{1-y}{\sqrt{zx+1-x-z}}=\frac{1-y}{\sqrt{\left(1-x\right)\left(1-z\right)}}\)
Khi đó \(P=\frac{x+y}{\sqrt{xy+z}}+\frac{y+z}{\sqrt{yz+x}}+\frac{z+x}{\sqrt{zx+y}}=\frac{1-z}{\sqrt{\left(1-x\right)\left(1-y\right)}}+\frac{1-x}{\sqrt{\left(1-y\right)\left(1-z\right)}}+\frac{1-y}{\sqrt{\left(1-x\right)\left(1-z\right)}}\)
\(\ge3\sqrt[3]{\frac{1-z}{\left(1-x\right)\left(1-y\right)}\times\frac{1-x}{\left(1-y\right)\left(1-z\right)}\times\frac{1-y}{\left(1-x\right)\left(1-z\right)}}=3\)
Vậy \(MinP=3\) đạt được khi \(x=y=z=\frac{1}{3}\)
\(P=\dfrac{x+y}{\sqrt{xy+z}}+\dfrac{y+z}{\sqrt{yz+x}}+\dfrac{z+x}{\sqrt{xz+y}}\)
\(P=\dfrac{x+y}{\sqrt{xy+\left(x+y+z\right)z}}+\dfrac{y+z}{\sqrt{yz+\left(x+y+z\right)x}}+\dfrac{x+z}{\sqrt{zx+\left(x+y+z\right)y}}\)
\(P=\dfrac{x+y}{\sqrt{xy+xz+yz+z^2}}+\dfrac{y+z}{\sqrt{yz+x^2+xy+xz}}+\dfrac{x+z}{\sqrt{xz+xy+y^2+yz}}\)
\(P=\dfrac{x+y}{\sqrt{\left(x+z\right)\left(y+z\right)}}+\dfrac{y+z}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{x+z}{\sqrt{\left(x+y\right)\left(y+z\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow P\ge3\sqrt[3]{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}}}=3\sqrt[3]{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}=3\)
\(\Rightarrow P\ge3\)
Vậy \(P_{min}=3\)
Dấu " = " xảy ra khi \(x=y=z=\dfrac{1}{3}\)
x + y + xy = 19 => (x+ 1) + y(x+1) = 20 => (x+1).(y +1) = 20 (1)
y + z + yz = 11 => (y +1) + z.(y +1) = 12 => (y +1)(z+1) = 12 (2)
(z + 1) + x(1+z) = 15 => (z+1)(x+1) = 15 (3)
Nhân từng vế của (1)(2)(3) ta được [(x+1)(y+1)(z+1)]2 = 20.12.15 = 3 600
=> (x+1)(y+1)(z+1) = 60 hoặc -60
+) nếu (x+1)(y+1)(z+1) = 60
từ (1) => z + 1 = 60 : 20 = 3 => z = 2
từ (2) => x+1 = 60 : 12 = 5 => x = 4
từ (3) => y + 1 = 60 : 15 = 4 => y = 3
+) Nếu (x+1)(y+1)(z+1) = - 60: tương tự.