Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=3x\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{870}\right)\)
=\(3x\left(\frac{1}{1x2}+\frac{1}{2x3}+....+\frac{1}{29x30}\right)\)
=\(3x\left(1-\frac{1}{2}-\frac{1}{3}-....-\frac{1}{30}\right)\)
\(=3x\left(1-\frac{1}{30}\right)=3x\frac{29}{30}=\frac{29}{10}\)
Đặt \(A=\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+...+\frac{3}{9900}\)
\(=\frac{3}{1\times2}+\frac{3}{2\times3}+\frac{3}{3\times4}+...+\frac{3}{99\times100}\)
\(\Rightarrow A:3=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=\frac{99}{100}\times3=\frac{297}{100}\)
Vậy \(A=\frac{297}{100}\).
\(\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+\frac{3}{20}+\frac{3}{30}+\frac{3}{42}+\frac{3}{56}\)
\(\frac{3}{1\cdot2}+\frac{3}{2\cdot3}+\frac{3}{3\cdot4}+\frac{3}{4\cdot5}+\frac{3}{5\cdot6}+\frac{3}{6\cdot7}+\frac{3}{7\cdot8}\)
\(3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(3\cdot\left(1-\frac{1}{8}\right)\)
\(3\cdot\frac{7}{8}=\frac{21}{8}\)
\(=3.\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\right)\)
\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)
\(\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+...+\frac{3}{9900}\\ =3\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=3\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{100-99}{99.100}\right)\\ =3\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)=3.\frac{99}{100}=\frac{297}{100}\)
\(F=\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+......+\frac{3}{870}\)
\(=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+.....+\frac{3}{29.30}\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{29}-\frac{1}{30}\right)\)
\(=3.\left(1-\frac{1}{30}\right)\)
\(=3.\frac{29}{30}\)
\(=\frac{29}{10}\)