Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=4
Chính xác 100%.k cho mình nha bạn!!Chúc bạn học tốt!!!
\(\frac{20}{16}\)+\(\frac{3}{15}\)+\(\frac{2}{12}\)+\(\frac{3}{4}\)+\(\frac{4}{5}\)+\(\frac{5}{6}\)= (\(\frac{20}{16}\)+\(\frac{3}{4}\) )+( \(\frac{3}{15}\)+ \(\frac{4}{5}\) )+( \(\frac{2}{12}\)+ \(\frac{5}{6}\) )
= 2+1+1 = 4
Chúc bạn học tốt !!!
\(X-\frac{2}{3}=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\)
\(=>X-\frac{2}{3}=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=>X-\frac{2}{3}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=>X-\frac{2}{3}=1-\frac{1}{100}\)
\(=>X-\frac{2}{3}=\frac{100}{100}-\frac{1}{100}\)
\(=>X-\frac{2}{3}=\frac{99}{100}\)
\(=>X=\frac{99}{100}+\frac{2}{3}\)
\(=>X=\frac{497}{300}\)
Lưu ý: dấu chấm thay dấu nhân
\(x-\frac{2}{3}=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\)
Tổng vế phải gồm : \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\)
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)
Với vế trái, ta có : \(x-\frac{2}{3}=\frac{99}{100}\)
\(x-\frac{2}{3}=\frac{99}{100}\)
\(x=\frac{99}{100}+\frac{2}{3}\)
\(x=\frac{497}{300}\)
Gọi tổng dãy số hạng trên là A
A = 1 + \(\frac{1}{2}\)+ 1 + \(\frac{1}{6}\)+ 1 + \(\frac{1}{12}\)+ ... + 1 + \(\frac{1}{90}\)+ 1 + \(\frac{1}{110}\)
Mà từ \(\frac{1}{2}\)đén \(\frac{1}{110}\) có 10 số
A = 1 x 10 + \(\frac{1}{2}\)+( \(\frac{1}{2}\)- \(\frac{1}{3}\)) + ( \(\frac{1}{3}\)-\(\frac{1}{4}\)) + (\(\frac{1}{4}\)-\(\frac{1}{5}\)) + ... + \(\frac{1}{11}\)
A = 10 + \(\frac{1}{2}\)+ \(\frac{1}{2}\)+ \(\frac{1}{11}\)= \(\frac{112}{11}\)
A = 5 x (\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{9900}\))
A = 5 x ( \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\))
A = 5x( \(\frac{1}{2}-\frac{1}{100}\))
A = \(\frac{49}{20}\)
Gọi tổng trên là A
\(\Leftrightarrow A=5\times\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)
(Tính dãy trong ngoặc) Gọi dãy trong ngoặc là B
\(\Leftrightarrow2B=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\)
\(\Leftrightarrow2B-B=\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\right)-\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)
\(\Leftrightarrow B=\frac{1}{3}-\frac{1}{9900}+0+...+0\)
\(\Leftrightarrow B=\frac{3299}{9900}\)
\(\Rightarrow A=5\times\frac{3299}{9900}\)
\(\Rightarrow A=1,6661616...\approx1,7\)
\(\frac{\left(\frac{3}{20}+\frac{1}{2}-\frac{1}{5}\right).\frac{12}{49}}{3\frac{1}{3}+\frac{2}{9}}=\frac{\left(\frac{3}{20}+\frac{1}{2}-\frac{1}{5}\right).\frac{12}{49}}{\frac{10}{3}+\frac{2}{9}}=\frac{\left(\frac{13}{20}-\frac{1}{5}\right).\frac{12}{49}}{\frac{32}{9}}=\frac{\frac{9}{20}.\frac{12}{49}}{\frac{32}{9}}=\frac{\frac{27}{245}}{\frac{32}{9}}=\frac{243}{7840}\)
Có đúng không vu bao quynh?
\(\frac{3}{2}+\frac{3}{4}+\frac{3}{6}+\frac{3}{8}+\frac{3}{10}+\frac{3}{12}\)
\(=\frac{18}{12}+\frac{9}{12}+\frac{6}{12}+\frac{3}{12}+\frac{3}{10}\)
\(=3+\frac{3}{10}\)
\(=\frac{30}{10}+\frac{3}{10}\)
\(=\frac{33}{10}\)
Ta thấy tất cả các phân số đều có mẫu số chung bằng 120
=> \(\frac{3}{2}\)+ \(\frac{3}{4}\)+ \(\frac{3}{6}\)+ \(\frac{3}{8}\)+ \(\frac{3}{10}\)+ \(\frac{3}{12}\)
= \(\frac{18}{120}\)+ \(\frac{90}{120}\)+ \(\frac{60}{120}\)+ \(\frac{45}{120}\)+ \(\frac{36}{120}\)+ \(\frac{30}{120}\)( cộng các ps lại với nhau )
= \(\frac{279}{120}\)
nhớ ủng hộ mik nghen
\(=3.\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\right)\)
\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)
\(\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+...+\frac{3}{9900}\\ =3\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=3\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{100-99}{99.100}\right)\\ =3\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)=3.\frac{99}{100}=\frac{297}{100}\)