K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 8 2021

51. 

- Với \(m=0\) hàm là hàm hằng (ktm)

- Với \(m=2\Rightarrow y=4x^2-4\) đồng biến khi \(x>0\) (thỏa mãn)

- Với \(m\ne\left\{0;2\right\}\) hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}m^2-2m>0\\4m-m^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>2\\m< 0\end{matrix}\right.\\0\le m\le4\end{matrix}\right.\) \(\Rightarrow2< m\le4\)

\(\Rightarrow m=\left\{2;3;4\right\}\) (D)

52.

\(y'=\dfrac{-m+1}{\left(x-m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}-m+1< 0\\m\ge2\end{matrix}\right.\) \(\Rightarrow m\ge2\) (C)

28 tháng 8 2021

Em cảm ơn ạ

NV
17 tháng 9 2021

1.

\(y'=x^2-6x+5=0\Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Dấu của y' trên trục số:

undefined

Hàm đồng biến trên các khoảng \(\left(-\infty;1\right)\) và \(\left(5;+\infty\right)\)

Hàm nghịch biến trên \(\left(1;5\right)\)

3.

TXĐ: \(D=R\backslash\left\{2\right\}\)

\(y'=\dfrac{-5}{\left(x-2\right)^2}< 0;\forall x\in D\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;2\right)\) và \(\left(2;+\infty\right)\)

NV
17 tháng 9 2021

4.

\(y'=4x^3+4x=4x\left(x^2+1\right)=0\Rightarrow x=0\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(0;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;0\right)\)

6.

Từ đồ thị ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-1;1\right)\)

25 tháng 9 2021

undefinedundefined

Bạn tham khảo nhé :)) Cái đoạn tính Lim là mình sử dụng máy tính cầm tay cho nhanh nên có thể nó hơi tắt 

16 tháng 9 2021

cái hồi nãy thiếu câu hỏi em bổ sung ở dưới này ạ 

em cảm ơn mnundefined

16 tháng 9 2021

chỉ em cách lm thôi cũng được ạ 

em cần gấp lắm 

bucminh

30 tháng 1 2016

bạn chỉ cần tách x4-1  ​thành (x2-1)(x2+1),rồi đặt x2=t là ok

30 tháng 1 2016

\(\frac{1}{12}\)

4 tháng 2 2016

đặt x =tant 

là xong trong 1 nốt nhạc

4 tháng 2 2016

 

Tách sin^2 = 1-cos^2=(1-cos)(1+cos)

 

Dùng phương pháp đồng nhất hệ số, đưa về thế này

1/cos +1/2(1-cos) -1/2(1+cos)

 

NV
14 tháng 9 2021

3.

Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

B đúng

4.

Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(0;1\right)\)

A đúng

1.

B sai (thiếu điều kiện \(f'\left(x\right)=0\) tại hữu hạn điểm)

14 tháng 9 2021

thầy ơi còn câu 9 vs câu 2 s thầy

 

8 tháng 12 2021

còn cái nịt

 

8 tháng 12 2021

Không giải hộ thì thôi đừng có mà ăn nói như thế :))