K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=AB^2+AC^2=5cm\)

b, Xét tam giác ABD và tan giác EBD có 

BD _ chung 

^ABD = ^EBD 

Vậy tam giác ABD = tam giác EBD (ch-gn) 

c, AD = ED ( 2 cạnh tương ứng ) 

Xét tam giác IAD và tam giác CED có 

^IDA = ^CDE ( đ . đ ) 

AD = ED ( cmt ) 

Vậy tam giác IAD = tam giác CED (ch-cgv) 

=> ID = CD ( 2 cạnh tương ứng ) 

 

Xét tam giác IDC có 

ID = DC => tam giác IDC cân tại D

 

12 tháng 11 2021

a: \(\widehat{C}=30^0\)

Bài 3: 

c) Ta có: \(\dfrac{2-x}{5}=\dfrac{x+4}{7}\)

\(\Leftrightarrow14-7x=5x+20\)

\(\Leftrightarrow-7x-5x=20-14\)

\(\Leftrightarrow-12x=6\)

hay \(x=-\dfrac{1}{2}\)

22 tháng 10 2021

bai tap nay lop may day

24 tháng 10 2021

Điên à 

Bài 4: 

a) Xét ΔABE và ΔHBE có 

BA=BH(gt)

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

BE chung

Do đó: ΔABE=ΔHBE(c-g-c)

b) Ta có: ΔABE=ΔHBE(cmt)

nên EA=EH(hai cạnh tương ứng)

Ta có: BA=BH(gt)

nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: EA=EH(cmt)

nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BE là đường trung trực của AH

c) Ta có: ΔABE=ΔHBE(cmt)

nên \(\widehat{BAE}=\widehat{BHE}\)(hai góc tương ứng)

mà \(\widehat{BAE}=90^0\)(gt)

nên \(\widehat{BHE}=90^0\)

Xét ΔBKC có 

KH là đường cao ứng với cạnh BC

CA là đường cao ứng với cạnh BK

KH cắt CA tại E

Do đó: E là trực tâm của ΔBKC(Tính chất ba đường cao của tam giác)

d) Ta có: EA=EH(cmt)

mà EH<EC(ΔEHC vuông tại H có EC là cạnh huyền)

nên EA<EC

17 tháng 10 2021

Câu 3: 

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{90}{5}=18\)

Do đó: x=54; y=36

17 tháng 10 2021

B giúp mik câu 4 đc k ạ

a: Xét ΔEAB có \(\widehat{EBA}=\widehat{EAB}\)

nên ΔEAB cân tại E

mà EK là đường cao

nen K là trung điểm của AB

hay KA=KB

b: Xét ΔACE vuông tại C và ΔBDE vuông tại D có 

EA=EB

\(\widehat{AEC}=\widehat{BED}\)

Do đó: ΔACE=ΔBDE

Suy ra: EC=ED

Ta có: AE+ED=AD

BE+CE=BC

mà AE=BE

và ED=EC

nên AD=BC

Bài 12: 

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

6 tháng 12 2021

Có thể lm bài 11 đc ko ạ🥺😅

10 tháng 1 2022

a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)

Xét tam giác AMB và tam giác ANC có:

+ AM = AN (cmt).

\(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)

+ MB = NC (gt).

\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).

\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).

Xét tam giác ABC có: AB = AC (cmt).

\(\Rightarrow\) Tam giác ABC cân tại A.

b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)

Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{​​}\) (đối đỉnh).

\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)

Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:

+ MB = NC (gt).

\(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)

\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).

c/ Tam giác MBH = Tam giác NCK (cmt).

\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).

Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).

\(\Rightarrow\) Tam giác OMN tại O.

 

20 tháng 10 2021

Bài 6:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{41}=\dfrac{b}{29}=\dfrac{c}{30}=\dfrac{a+b}{41+29}=\dfrac{700}{70}=10\)

Do đó: a=410; b=290; c=300

20 tháng 10 2021

dạ ko ạ, làm dạng 1 và 2 ạ

`@` `\text {Ans}`

`\downarrow`

`1,`

`a)`

\(\dfrac{x}{2}=\dfrac{y}{3}\text{ và }x+y=50\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/2 = y/3 = (x+y)/(2 + 3) = 50/5 = 10`

`=> x/2 = y/3 = 10`

`=> x = 10*2 = 20; y = 3*10 = 30`

Vậy, `x = 20; y = 30`

`b)`

\(\dfrac{x}{2}=\dfrac{y}{3}\text{ và }5x+4y=110\)

Ta có:

`x/2 = y/3` `=> (5x)/10 = (4y)/12`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(5x)/10 = (4y)/12 = (5x+4y)/(10 + 12) = 110/22 = 5`

`=> x/2 = y/3 = 5`

`=> x = 2*5 = 10; y = 3*5 = 15`

Vậy, `x = 10; y = 15`

`c)`

\(5x=11y\text{ và }2x+3y=37\)

Ta có:

`5x = 11y -> x/11 = y/5 -> (2x)/22 = (3y)/15`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(2x)/22 = (3y)/15 = (2x+3y)/(22+15) = 37/37 = 1`

`=> x/11 = y/5 = 1`

`=> x = 11; y = 5`

Vậy, `x = 11; y = 5`

`d)`

\(\dfrac{x}{2}=\dfrac{y}{1}\text{và }x+y-63=0\)

Ta có: `x + y - 63 = 0 -> x + y = 63`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/2 = y/1 = (x+y)/(2+1) = 63/3 = 21`

`=> x/2 = y/1 = 21`

`=> x = 21*2 =42; y = 21`

Vậy, `x = 42; y = 21.`

25 tháng 7 2023

`2,`

`a)`

\(\dfrac{a}{14}=\dfrac{b}{2}=\dfrac{c}{4}\text{ và }a+b+c=5\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`a/14 = b/2 = c/4 = (a+b+c)/(14+2+4)=5/20=1/4=0,25`

`=> a/14 = b/2 = c/4 = 0,25`

`=> a = 14*0,25 = 3,5` `; b = 2*0,25 = 0,5;` `c = 4*0,25 = 1`

Vậy, `a = 3,5`; `b = 0,5`; `c = 1`

`b)`

\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{8}\text{ và }7a+3b-5c=7\)

Ta có:

`a/3 = b/5 = c/8 => (7a)/21 = (3b)/15 = (5c)/40`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(7a)/21 = (3b)/15 = (5c)/40 = (7a + 3b - 5c)/(21 + 15 - 40)=7/-4 = -1,75`

`=> a/3 = b/5 = c/8 = -1,75`

`=> a = 3*(-1,75) = -5,25`

`b = 5*(-1,75) = -8,75`

`c = 8*(-1,75) = -14`

Vậy, `a = -5,25; b = -8,75`; `c = -14`

`c)`

\(\dfrac{a}{3}=\dfrac{b}{8}=\dfrac{c}{5}\text{và }3a+b-2c=14\)

Ta có:

`a/3 = b/8 = c/5 -> (3a)/9 = b/8 = (2c)/10`

Câu này bạn làm tương tự nha

`d)`

\(\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{7}=\dfrac{c}{5}\text{ và }3a+5c-7b=30\)

Ta có:

`a/3 = b/2 -> a/21 = b/14`/

`b/7 = c/5 -> b/14 = c/10`

`=> a/21 = b/14 = c/10`

`=> (3a)/63 = (7b)/98 = (5c)/50`

Câu này bạn cũng làm tương tự.