Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay \(y=\dfrac{1}{3}\) vào (d3), ta được:
\(\dfrac{-2}{3}x+\dfrac{5}{3}=\dfrac{1}{3}\)
\(\Leftrightarrow x=2\)
Thay x=2 và \(y=\dfrac{1}{3}\) vào (d), ta được:
\(2\left(m-2\right)+m+7=\dfrac{1}{3}\)
\(\Leftrightarrow3m=\dfrac{1}{3}-3=\dfrac{-8}{3}\)
hay \(m=-\dfrac{8}{9}\)
\(a,\) Gọi M,N theo thứ tự là giao điểm của \(\left(d\right)\) với trục hoành và trục tung
Khi \(x=0\Rightarrow y=m\Rightarrow M\left(0;m\right)\)
Khi \(y=0\Rightarrow\left(m-1\right)x+m=0\Rightarrow x=\dfrac{-m}{m-1}\Rightarrow N\left(\dfrac{-m}{m-1};0\right)\)
Gọi H là chân đg vuông góc kẻ từ O đến MN
Áp dụng HTL:
\(\dfrac{1}{OH^2}=\dfrac{1}{OM^2}+\dfrac{1}{ON^2}\\ \Rightarrow\dfrac{1}{1^2}=\dfrac{1}{2^2}+\dfrac{1}{\left(\dfrac{-m}{m-2}\right)^2}\\ \Rightarrow\dfrac{\left(m-2\right)^2}{m^2}=\dfrac{3}{4}\\ \Rightarrow4\left(m-2\right)^2=3m^2\\ \Rightarrow4m^2-16m+16-3m^2=0\\ \Rightarrow m^2-16m+16=0\\ \Delta=256-4\cdot16=192\\ \Rightarrow\left[{}\begin{matrix}m=\dfrac{16-8\sqrt{3}}{2}=8-4\sqrt{3}\\m=\dfrac{16+8\sqrt{3}}{2}=8+4\sqrt{3}\end{matrix}\right.\)
\(b,\) Giả sử A là điểm cố định của \(y=\left(m-1\right)x+m\). Khi đó \(\left(d\right)\) luôn đi qua A với mọi m. Xét \(m=1\Rightarrow y=1\)
Vậy \(\left(d\right)\) luôn đi qua điểm có tung độ bằng 1
Với \(m=2\Rightarrow2=\left(2-1\right)x+2\Rightarrow x=0\)
Vậy \(\left(d\right)\) luôn đi qua điểm \(A\left(0;1\right)\)
a,a, Gọi M,N theo thứ tự là giao điểm của (d)(d) với trục hoành và trục tung
Khi x=0⇒y=m⇒M(0;m)x=0⇒y=m⇒M(0;m)
Khi y=0
⇒(m−1)x+m=0⇒x=−mm−1⇒N(−mm−1;0)y=0⇒(m−1)x+m=0⇒x=−mm−1⇒N(−mm−1;0)
Gọi H là chân đg vuông góc kẻ từ O đến MN
Áp dụng HTL:
1OH2=1OM2+1ON2⇒112=122+1(−mm−2)2⇒(m−2)2m2=34⇒4(m−2)2=3m2⇒4m2−16m+16−3m2=0
1: Thay x=3 và y=6 vào (d), ta được:
3a+2=6
hay \(a=\dfrac{4}{3}\)
\(\Delta=\left(m-1\right)^2+8>0;\forall m\) nên pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2\end{matrix}\right.\)
\(\left(1-\dfrac{2}{x_1+1}\right)^2+\left(1-\dfrac{2}{x_2+1}\right)^2=1\)
\(\Leftrightarrow\left(\dfrac{x_1-1}{x_1+1}\right)^2+\left(\dfrac{x_2-1}{x_2+1}\right)^2=1\)
\(\Leftrightarrow\left(\dfrac{x_1-1}{x_1+1}+\dfrac{x_2-1}{x_2+1}\right)^2-2\left(\dfrac{x_1-1}{x_1+1}\right)\left(\dfrac{x_2-1}{x_2+1}\right)=1\)
\(\Leftrightarrow\left(\dfrac{\left(x_1-1\right)\left(x_2+1\right)+\left(x_1+1\right)\left(x_2-1\right)}{\left(x_1+1\right)\left(x_2+1\right)}\right)^2-2\left(\dfrac{x_1x_2-\left(x_1+x_2\right)+1}{x_1x_2+x_1+x_2+1}\right)=1\)
\(\Leftrightarrow\left(\dfrac{2x_1x_2-2}{x_1x_2+x_1+x_2+1}\right)^2-2\left(\dfrac{x_1x_2-\left(x_1+x_2\right)+1}{x_1x_2+x_1+x_2+1}\right)=1\)
\(\Leftrightarrow\left(\dfrac{-6}{m-2}\right)^2+2\left(\dfrac{m}{m-2}\right)=1\)
\(\Leftrightarrow36\left(\dfrac{1}{m-2}\right)^2+4\left(\dfrac{1}{m-2}\right)+1=0\)
Pt trên vô nghiệm nên ko tồn tại m thỏa mãn yêu cầu
Tới đó đặt \(\dfrac{1}{m-2}=t\) là thành 1 pt bậc 2 bình thường, bấm máy thấy nó vô nghiệm là đủ kết luận rồi em
ĐKXĐ: \(m\ne1\)
Gọi \(\left(d'\right):y+2x-3=0\)
\(\Leftrightarrow\left(d'\right):y=-2x+3\)
Để \(\left(d\right)\perp\left(d'\right)\) thì: \(\left(m-1\right).\left(-2\right)=-1\)
\(\Leftrightarrow-2m+2=-1\)
\(\Leftrightarrow-2m=-3\)
\(\Leftrightarrow m=\dfrac{3}{2}\) (nhận)
\(\Rightarrow\left(d\right):y=\dfrac{1}{2}x+n+2\)
Thay tọa độ điểm A(2; 4) vào (d) ta được:
\(4=\dfrac{1}{2}.2+n+2\)
\(\Leftrightarrow1+n+2=4\)
\(\Leftrightarrow n=4-1-2\)
\(\Leftrightarrow n=1\)
Vậy \(m=\dfrac{3}{2};n=1\)
d vuông góc với \(d_4\) khi:
\(\left(m-2\right).\left(-\dfrac{1}{6}\right)\left(m+3\right)=-1\)
\(\Leftrightarrow m^2+m-12=0\)
\(\Rightarrow\left[{}\begin{matrix}m=3\\m=-4\end{matrix}\right.\)
Em vừa đăng thêm 1 câu hỏi ý ạ,thầy/cô giúp em được không ạ ? Em cám ơn thầy/cô ạ