Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10^k + 8^k + 6^8 là chẵn
9^k + 7^k + 5^k là lẻ
mà chẵn - lẻ là lẻ
=> hiệu trên là lẻ
tương tư thì câu 2 cũng giải như vậy
a)3^n=51
b)3^n.3=243
c)7^n:7^4=49
d)n^4=81
e)2^n.2^4=128
g)5^2:2^n=625
h)n^3=216
k)n^2=2^3+3^2+4^3
l)n^3=n^2
a, Xem lại đề.
b, <=> \(3^{n+1}=3^5\) <=> \(n+1=5\) <=> \(n=4\)
c, <=> \(7^{n-4}=7^2\) <=> \(n-4=2\) <=> \(n=6\)
d, <=> \(n=\pm3\)
e, <=> \(2^{n+4}=2^7\) <=> \(n+4=7\) <=> \(n=3\)
g, <=> \(2^n=\frac{1}{25}\) <=> .... (xem lai đề)
h, <=> \(n=6\)
k, <=> \(n^2=81\) <=> \(n=\pm9\)
l, <=> \(n^2\left(n-1\right)=0\) <=> \(\orbr{\begin{cases}n=0\\n=1\end{cases}}\)
Ta có :
1/n - 1/n + k
= n + k - n / n . ( n + k )
= k / n . ( n + k )
Ta có \(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\cdot\left(n+k\right)}-\frac{n}{n\cdot\left(n+k\right)}=\frac{k}{n\cdot\left(n+k\right)}\) (dpcm)
1)10;8;6 là số chắn nên 10k;8k;6k đều là số chẵn =>(10k+8k+6k) là số chẵn
9;7;5 là số lẻ nên 9k;7k;5k đều là số lẻ =>(9k+7k+5k) là số lẻ ( tổng 3 số lẻ là một số lẻ)
Hiệu của một số chẵn trừ đi một số lẻ là một số lẻ => hiệu trên không chia hết cho 2
2) 2001;2003 là số lẻ nên 2001n;2003n là số lẻ nên tổng 2 số lẻ 2001n+2003n sẽ là số chẵn
Mà 2002n là số chẵn nên tổng trên là môt số chẵn => chia hết cho 2
(10k+8k+6k)-(9k+7k+5k)=
=243k-213k=(24-21)3k-3k=3
Mà 3\(⋮̸2\)
⇒Hiệu trên ko chia hết cho 2 (kϵn*)
a, A= { 36;40;44;........;228}
Số các phần tử là ( 228 - 36) : 4 +1= 49( số hạng)
tổng các phần tử là: ( 228+36) x 49 :2=6468
Phần b cũng vậy mà làm nhé
a, \(3^4\)
b, \(8^7:8^2\)
c, \(x^3.x^2.x\)
d, \(4^n.4^2\)
e, \(3^{k+2}:3^k\)
a, 3^4
b,8^7:8^2=8^5
c, x^3.x^2.x=x^6
d,4^n.4^2=4^(n+2)
e, 3^k+2:3^k
=3^k.(1+2)
=3^k.3
=3^(k+10
Mấy bài này đẽ ẹc mà !!!
Tập E có vô số phần tử. Bạn cần làm gì với tập E nhỉ?