Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Kẻ OH ⊥ AB tại H suy ra H là trung điểm của AB
Xét tam giác OHB vuông tại H có OH = 3; OB = 5 . Theo định lý Pytago ta có:
Mà H là trung điểm của AB nên AB = 2HB = 8 cm
Vậy AB = 8 cm
Chọn đáp án B.
Kẻ OH ⊥ AB tại H suy ra H là trung điểm của AB
Xét tam giác OHB vuông tại H có OH = 3; OB = 5 . Theo định lý Pytago ta có:
Mà H là trung điểm của AB nên AB = 2HB = 8 cm
Vậy AB = 8 cm
Lời giải:
Gọi dây trên là dây AB. Hạ OH⊥⊥AB = {H} (cd)
Xét (O) 1 phần đường kính OH: OH⊥⊥AB = {H} (cd)
=> H là trung điểm AB (đl) => HA = HB = AB: 2 = 12:2 = 6 (cm)
OH⊥⊥AB = {H} (cd) => ΔΔOHB vuông tại H (đn)
=> OH22+ HB22= OB22(Đl Py-ta-go)
T/s: OH22+ 622= R22
<=> OH22+36 = 1022=100
<=> OH22= 64 => OH = 8 (cm)
Gọi H là chân đường cao kẻ từ O
=> H là trung điểm AB
=> AH = AB/2 = 12/2 = 6 cm
Theo định lí Pytago cho tam giác AOH vuông tại H
\(AO^2=OH^2+AH^2\Rightarrow OH^2=AO^2-AH^2=100-36=64\Rightarrow OH=8\)cm
Xét tam giác OAB
Chu vi C = 10 + 10 + 12 = 32 cm
p = C/2 = 32/2 = 16 cm
SOAB = \(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
= \(\sqrt{16\left(16-10\right)\left(16-10\right)\left(16-12\right)}\)
= \(\sqrt{16.6.6.4}\)
= 4.6.2 = 48 cm2
SOAB = \(\frac{1}{2}\)AB.h
=> h = 2SOAB/AB = 48.2/12 = 8 cm
Cách 2: H là đường cao tam giác cân OAB.
Xét tam giác vuông OHA (vuông tại H)
AH = 6 cm
OA = 10 cm
OH2 = OA2 - AH2 = 102 - 62 = 100 - 36 = 64
=> OH = 8 cm