K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đúng - Sai 

a) 2 số nguyên tố bất kỳ cũng là 2 số nguyên tố cùng nhau     Đ  

b)Các số nguyên cùng nhau đều là các số nguyên tố              S

c) 2 số lẻ thì nguyên tố cùng nhau                                            S        

d) Số chắn và số lẻ thì nguyên tố cùng nhau                            S

HT

18 tháng 10 2021

Đúng - Sai 

a) 2 số nguyên tố bất kỳ cũng là 2 số nguyên tố cùng nhau     Đ  

b)Các số nguyên cùng nhau đều là các số nguyên tố              S

c) 2 số lẻ thì nguyên tố cùng nhau                                            S        

d) Số chắn và số lẻ thì nguyên tố cùng nhau                           KO B

14 tháng 10 2015

đúng vì đó là 2 và 3

đúng VD 3;5;7

sai vì nguyên tố 2 chẵn

sai nguyên tố 2 tận cùng là 2

tick nha có giải thick đàng hoàng đó

15 tháng 2 2017

a) Đúng. 2 và 3 là hai số tự nhiên liên tiếp và đều là số nguyên tố.

b) Đúng. 3; 5; 7 là ba số lẻ liên tiếp và đều là số nguyên tố.

c) Sai vì có số 2 là số nguyên tố chẵn.

d) Sai vì 2 là số nguyên tố và không tận cùng bằng các chữ số trên.

Vậy ta có bảng sau:

Câu Đúng Sai
a) X  
b) X  
c)   X
d)   X
10 tháng 10 2015

tớ chỉ làm mẫu 1 câu thôi nhé, lười lắm

gọi 1 số là a, số kia là a+1

gọi ước chung lỡn nhất của 2 số đó là d

=> a chia hết cho d

a+1 chia hết cho d

=> a+1-a chia hết cho d

=> 1 chia hết cho d

d thuộc ước của 1 , d=1

=> 2 số đó nguyên tố cùng nhau, ok?

1 tháng 8 2015

a) đúng

b) sai

c) sai

d) sai                              

6 tháng 8 2017

a) Đúng 

b)Sai

c)Sai 

d) Sai

12 tháng 11 2017

Gọi UCLN ( a, a + b ) = d          ( d \(\in\)N* )

Ta có :

\(⋮\)

a + b \(⋮\)d         

Từ đó ta  có :

a + b - a \(⋮\)d  

=> b\(⋮\)d

Mà a\(⋮\)d    ; b\(⋮\)d    => d \(\in\)ƯC ( a , b )

Mặt khác ƯCLN ( a , b ) = 1 nên 1 \(⋮\)d  

Suy ra d \(\in\)Ư ( 1 ) = { 1 }        hay d = 1

Vậy nếu a, b nguyên tố cùng nhau thì a và a + b nguyên tố cùng nhau .

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.