K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
SG
1
TT
0
PT
1
CM
4 tháng 2 2018
* Dựng hình:
- Dựng tam giác ADC có AD = 2cm, DC = 4cm, CA = 5cm.
- Dựng tia Ax song song với CD.
- Đường tròn (C; 3cm) cắt Ax tại B1 và B2.
Hình thang ABCD với B ≡ B1 hoặc B ≡ B2 là hình thang cần dựng.
* Chứng minh
+ Tứ giác ABCD có AD = 2cm, DC = 4cm, CA = 5cm.
+ Ax // CD ⇒ AB // CD ⇒ ABCD là hình thang.
+ B ∈ (C; 3cm) ⇒ BC = 3cm.
SG
1
Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn bài toán.
Ta thấy ∆ ADC xác định được vì biết AD = 2cm, ∠ D = 90 0 , DC = 4cm. Ta cần xác định đỉnh B. Đỉnh B thỏa mãn hai điều kiện:
- B nằm trên tia Ax//CD
- B cách C một khoảng bằng 3cm
Cách dựng:
- Dựng ΔADC biết:
AD = 2cm, ∠ D = 90 0 , DC = 4cm
- Dựng Ax ⊥ AD
- Dựng cung tròn tâm C bán kính bằng 3cm, cắt Ax tại B.
Nối BC ta có hình thang ABCD dựng được.
Chứng minh:
Thật vậy theo cách dựng, ta có: AB // CD , ∠ D = 90 0
Tứ giác ABCD là hình thang vuông
Lại có AD = 2cm, CD = 4cm, BC = 3cm
Hình thang dựng được thỏa mãn điều kiện bài toán.
Biện luận: ∆ ADC dựng được, hình thang ABCD luôn dựng được.
Bài toán có hai nghiệm hình.