Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=-\left(y^2+12y+36\right)=-y^2-12y-36\)
\(2,=-\left(16-8y+y^2\right)=-16+8y-y^2\)
\(3,=-\left(\dfrac{4}{9}+\dfrac{4}{3}x+x^2\right)=-\dfrac{4}{9}-\dfrac{4}{3}x-x^2\)
\(4,=-\left(x^2-3x+\dfrac{9}{4}\right)=-x^2+3x-\dfrac{9}{4}\)
\(5,-\left(2+3y\right)^2=-\left(4+12y+9y^2\right)=-4-12y-9y^2\)
.... mấy ý còn lại bn tự lm nhé, tương tự thhooi
1) \(-\left(y+6\right)^2=-y^2-12y-36\)
2) \(-\left(4-y\right)^2=-y^2+8y-16\)
3) \(-\left(x+\dfrac{2}{3}\right)^2=-x^2-\dfrac{4}{3}x-\dfrac{4}{9}\)
4) \(-\left(x-\dfrac{3}{2}\right)^2=-x^2+3x-\dfrac{9}{4}\)
5) \(-\left(3y+2\right)^2=-9y^2-12y-4\)
6) \(-\left(2y-3\right)^2=-4y^2+12y-9\)
7) \(-\left(5x+2y\right)^2=-25x^2-20xy-4y^2\)
8) \(-\left(2x-\dfrac{3}{2}\right)^2=-4x^2+6x-\dfrac{9}{4}\)
\(\dfrac{\left(a+b\right)^2-\left(a-b\right)^2}{4}=\dfrac{a^2+2ab+b^2-a^2+2ab-b^2}{4}=\dfrac{4ab}{4}=ab\left(đpcm\right)\)
\(\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2=2\left(x^2+y^2\right)\left(dpcm\right)\)
Bài làm:
a) \(\left(x^4-2x^2y+y^2\right)\div\left(y-x^2\right)\)
\(=\left(x^2-y\right)^2\div\left(y-x^2\right)\)
\(=\left(y-x^2\right)^2\div\left(y-x^2\right)\)
\(=y-x^2\)
b) \(\left(x^2-2xy^2+y^4\right)\div\left(x-y^2\right)\)
\(=\left(x-y^2\right)^2\div\left(x-y^2\right)\)
\(=x-y^2\)
\(x^2+10x+y^2-2y+26+\left(3z-6\right)^2=0\)
\(\Leftrightarrow x^2+10x+25+y^2-2y+1+\left(3z-6\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2+\left(y-1\right)^2+\left(3z-6\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+5=0\\y-1=0\\3z-6=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=1\\z=2\end{cases}}\)
a)x\(^2\)+10x+26+y\(^2\)+2y
=(^2+10x+25)+(y^2+2y+1)
=(x+5)^2+(y+1)^2
a. x2 + 10x + 26 + y2 + 2y
= x2 + 10x + 25 + y2 + 2y + 1
= (x + 5)2 + (y + 1)2 (Xem lại đề)
b. z2 - 6z + 5 - t2 - 4t
= z2 - 6z + 9 - t2 - 4t - 4
= (z - 3)2 - (t2 + 4t + 4)
= (z - 3)2 - (t + 2)2
c. (y + 2z - 3).(y - 2z - 3)
= (y - 3 + 2z).(y - 3 - 2z)
= (y - 3)2 - (2z)2
d. (x + 2y + 3z).(2y + 3z - x)
= (2y + 3z + x).(2y + 3z - x)
= (2y + 3z)2 - x2
\(A=x^2-2xy+y^2=\left(x-y\right)^2\)
Khi x=11 và y=1 thì \(A=\left(11-1\right)^2=10^2=100\)
\(x^2+10x+26+y^2+2y\)
\(=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
\(\left(x+y+4\right)\left(x+y-4\right)\)
\(=\left(x+y\right)^2-16\)
\(=x^2+y^2+2xy-16\)
a, =(x^2 +10x+25) +(y^2 +2y+1)
= (x+5)^2 +(y+1)^2
b, =(x+y)^2 -4^2
= x^2 + 2xy+ y^2 -16