K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2019

Xét các trường hợp:

1. a, b, a’, b’ ≠ 0

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ phương trình có vô số nghiệm khi hai đường thẳng trùng nhau. Nghĩa là hai đường thẳng có hệ số góc và tung độ gốc bằng nhau:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

*a = 0, a’ ≠ 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì hai đường thẳng Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 luôn luôn cắt trục hoành còn đường thẳng y = c/b song song hoặc trùng với trục hoành nên chúng luôn luôn cắt nhau.

Vậy hệ phương trình chỉ có một nghiệm duy nhất.

*a = a’ = 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ có vô số nghiệm khi hai đường thẳng trùng nhau, nghĩa là:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ vô nghiệm khi hai đường thẳng song song nhau, nghĩa là:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

*b = 0, b’ ≠ 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì hai đường thẳng Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9luôn luôn cắt trục tung còn đường thẳng x = c/a song song hoặc trùng với trục tung nên chúng luôn luôn cắt nhau.

Vậy hệ phương trình chỉ có một nghiệm duy nhất.

*b = b’ = 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ có vô số nghiệm khi hai đường thẳng trùng nhau, nghĩa là:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ vô nghiệm khi hai đường thẳng song song nhau, nghĩa là:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng:

Hệ hai phương trình bậc nhất hai ẩn có vô số nghiệm:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 nên hệ phương trình có vô số nghiệm

18 tháng 9 2019

Xét các trường hợp:

1. a, b, a’, b’ ≠ 0

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ phương trình vô nghiệm khi hai đường thẳng song song nhau. Nghĩa là hai đường thẳng có hệ số góc bằng nhau và tung độ gốc khác nhau:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng:

Hệ hai phương trình bậc nhất hai ẩn vô nghiệm:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 nên hệ phương trình trên vô nghiệm

25 tháng 11 2017

Xét các trường hợp:

1. a, b, a’, b’ ≠ 0

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ phương trình có một nghiệm duy nhất khi hai đường thẳng cắt nhau. Nghĩa là hai đường thẳng có hệ số góc khác nhau:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng:

Hệ hai phương trình bậc nhất hai ẩn vô nghiệm:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 nên hệ phương trình trên vô nghiệm

2 tháng 10 2018

Ta biết tập nghiệm của phương trình ax + by = c được biểu diễn bằng đường thẳng ax + by = c và tập nghiệm của phương trình a'x + b'y = c' được biểu diễn bằng đường thẳng a'x + b'y = c'.

Giải bài 3 trang 25 SGK Toán 9 Tập 2 | Giải toán lớp 9

7 tháng 5 2017

Ta biết tập nghiệm của phương trình ax + by = c được biểu diễn bằng đường thẳng ax + by = c và tập nghiệm của phương trình a'x + b'y = c' được biểu diễn bằng đường thẳng a'x + b'y = c'.

Giải bài 3 trang 25 SGK Toán 9 Tập 2 | Giải toán lớp 9

11 tháng 7 2019

Đáp án B

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

24 tháng 7 2018

Đáp án B

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

3 tháng 4 2019

a) Hệ đã cho vô nghiệm bởi vì mỗi nghiệm của hệ là nghiệm chung của hai phương trình, một phương trình vô nghiệm thì hệ không có nghiệm chung.

b) Hệ đã cho có vô số nghiệm.

4 tháng 8 2019

Xét hệ phương trình bậc nhất hai ẩn a x + b y = c a ' x + b ' y = c ' (các hệ số khác 0)

- Hệ phương trình có nghiệm duy nhất ⇔ a a ' ≠ b b '

- Hệ phương trình vô nghiệm ⇔ a a ' = b b ' ≠ c c '

- Hệ phương trình có vô số nghiệm ⇔ a a ' = b b ' = c c '

Đáp án: B