K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2022

chịu.-.

HT~~~

3 tháng 10 2022

loading...  

19 tháng 7 2016

\(\frac{1}{x-y}.\sqrt{x^4\left(x^2+y^2-2xy\right)}\)

\(=\frac{1}{x-y}.\sqrt{\left(x^2\right)^2.\left(x-y\right)^2}\)

\(=\frac{1}{x-y}\left(x-y\right)x^2\)

\(=x^2\)

27 tháng 7 2023

a) \(\sqrt{128\left(x-y\right)^2}\)

\(=\sqrt{8^2\cdot2\left(x-y\right)^2}\)

\(=\left|8\left(x-y\right)\right|\sqrt{2}\)

\(=8\left|\left(x-y\right)\right|\sqrt{2}\)

b) \(\sqrt{150\left(4x^2-4x+1\right)}\)

\(=\sqrt{5^2\cdot6\left(2x-1\right)^2}\)

\(=\left|5\left(2x-1\right)\right|\sqrt{6}\)

\(=5\left|2x-1\right|\sqrt{6}\)

c) \(\sqrt{x^3-6x^2+12x-8}\)

\(=\sqrt{\left(x-2\right)^3}\)

\(=\sqrt{\left(x-2\right)^2\left(x-2\right)}\)

\(=\left|x-2\right|\sqrt{x-2}\)

a: \(=\sqrt{64\cdot2\cdot\left(x-y\right)^2}=8\sqrt{2}\cdot\left|x-y\right|\)

b; \(=\sqrt{25\cdot6\left(2x-1\right)^2}=5\sqrt{6}\cdot\left|2x-1\right|\)

c: \(=\sqrt{\left(x-2\right)^3}=\left|x-2\right|\cdot\sqrt{x-2}\)

\(\sqrt{\left(-9\right)\cdot\left(-36\right)\cdot ab^2}\)

\(=\sqrt{9\cdot36\cdot ab^2}\)

\(=3\cdot4\cdot\left|b\right|\cdot\sqrt{a}\)

\(=12\left|b\right|\cdot\sqrt{a}\)

15 tháng 8 2021

đưa thừa số vào trong dấu căn*

mình nhầm

a: \(a^2\cdot\sqrt{\dfrac{2}{3a}}=a^2\cdot\dfrac{\sqrt{2}}{\sqrt{3}\cdot\sqrt{a}}=\dfrac{a\sqrt{2}}{\sqrt{3}}=\dfrac{a\sqrt{6}}{3}\)

b: \(\dfrac{x-3}{x}\cdot\sqrt{\dfrac{x^3}{9-x^2}}\)

\(=\dfrac{x-3}{x}\cdot\dfrac{x\sqrt{x}}{\sqrt{x-3}\cdot\sqrt{x+3}}\)

\(=\dfrac{\sqrt{x}\cdot\sqrt{x-3}}{\sqrt{x+3}}\)

25 tháng 7 2021

\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}=\frac{2xy^2}{3ab}\frac{3\sqrt{a^2.a}\sqrt{\left(b^2\right)^2}}{2\sqrt{2xy^2.y}}\)

\(=\frac{2xy^2}{3ab}\frac{3a\sqrt{a}b^2}{2y\sqrt{2xy}}=\frac{6xy^2ab^2\sqrt{a}}{6aby\sqrt{2xy}}=\frac{bxy\sqrt{a}}{\sqrt{2xy}}\)

\(=\frac{bxy\sqrt{2axy}}{2xy}=\frac{b\sqrt{2axy}}{2}\)

19 tháng 1 2022

a) \(M=\sqrt{4\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{16\left(x-1\right)}\)

\(=2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}=-5\sqrt{x-1}\)

b) \(N=\sqrt{25\left(y+4\right)}+\sqrt{36\left(y+4\right)}-2\sqrt{81\left(y+4\right)}\)

\(=5\sqrt{y+4}+6\sqrt{y+4}-18\sqrt{y+4}=-7\sqrt{y+4}\)

c) \(P=\sqrt{y-2}-3\sqrt{64\left(y-2\right)}+4\sqrt{49\left(y-2\right)}\)

\(=\sqrt{y-2}-24\sqrt{y-2}+28\sqrt{y-2}=5\sqrt{y-2}\)

a) \(M=\sqrt{4\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{16\left(x-1\right)}.\)

\(M=\sqrt{4\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{16\left(x-1\right)}\)

\(=2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}\)

\(=-5\sqrt{x-1}\)

b) \(N=\sqrt{25\left(y+4\right)}+\sqrt{36\left(y+4\right)}-2\sqrt{81\left(y+4\right)}\)

\(N=\sqrt{25\left(y+4\right)}+\sqrt{36\left(y+4\right)}-2\sqrt{81\left(y+4\right)}\)

\(=5\sqrt{y+4}+6\sqrt{y+4}\)

\(=-7\sqrt{y+4}\)

c) \(P=\sqrt{\left(y-2\right)}-3\sqrt{64\left(y-2\right)}+4\sqrt{49\left(y-2\right)}\)

\(P=\sqrt{\left(y-2\right)}-3\sqrt{64\left(y-2\right)}+4\sqrt{49\left(y-2\right)}\)

\(=\sqrt{y-2}-24\sqrt{y-2}+28\sqrt{y-2}\)

\(=5\sqrt{y-2}\)