K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

Đáp án D

Nhận xét:

Parabol có bề lõm hướng xuống. Loại đáp án A, C.

Parabol cắt trục hoành tại 2 điểm (3; 0) và (−1; 0). Xét các đáp án B và D, đáp án D thỏa mãn.

9 tháng 4 2017

Đáp án B

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Để \(y = 8 \Leftrightarrow \frac{1}{2}{x^2} = 8 \Leftrightarrow {x^2} = 16 \Leftrightarrow x = 4\) hoăc \(x =  - 4\)

b) Vẽ đồ thị y=2x+1:

-Là đồ thị bậc nhất nên đồ thị là đường thẳng đi qua điểm có tọa độ (0; 1) và

(-1; -1)

Vẽ đồ thị \(y = 2{x^2}\)

- Đi qua điểm (1; 2) ; (-1; 2);(0;0)

4 tháng 6 2018

Đáp án A

14 tháng 11 2021

Đáp án :

B. Đồ thị hàm số chẵn nhận trục hoành làm trục đối xứng.

22 tháng 12 2021

a: Thay x=3 và y=0 vào (1), ta được:

\(6-3m=0\)

hay m=2

7 tháng 12 2016

Toán lớp 9.

NV
30 tháng 12 2020

Pt hoành độ giao điểm:

\(-x^2+2x+3=-2x+1\)

\(\Leftrightarrow x^2-4x-2=0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{6}\Rightarrow y=-3-2\sqrt{6}\\x=2-\sqrt{6}\Rightarrow y=-3+2\sqrt{6}\end{matrix}\right.\)

Vậy tọa độ giao điểm là: \(\left(2+\sqrt{6};-3-2\sqrt{6}\right)\)

 Và \(\left(2-\sqrt{6};-3+2\sqrt{6}\right)\)

30 tháng 12 2020

\(\left(P\right):y=-x^2+2x+3\\ \left(d\right):y=-2x+1\)

xét phương trình hoành độ giao điểm của (P) và (d) 

\(-x^2+2x+3=-2x+1\)

\(< =>-x^2+4x+2=0\)

\(< =>\left[{}\begin{matrix}x=2+\sqrt{6}\\x=2-\sqrt{6}\end{matrix}\right.\)

thay vào (d) => \(\left[{}\begin{matrix}x=2+\sqrt{6}=>y=-3-2\sqrt{6}\\x=2-\sqrt{6}=>y=-3+2\sqrt{6}\end{matrix}\right.\)

vậy ...