K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 6 2019

\(y'=-3x^2+6x+9\) ; \(y''=-6x+6\)

\(y''=0\Rightarrow x=1\Rightarrow y=13\)

Tâm đối xứng của đồ thị là \(\left(1;13\right)\)

4 tháng 11 2017

y ' = - 3 x 2 - 6 x ; y ' ' = - 6 x - 6 ; y ' ' = 0 = > x = - 1

Vậy điểm U(-1; -1) là tâm đối xứng của đồ thị . 

(Đồ thị hàm số bậc ba nhận điểm uốn làm tâm đối xứng – hoành độ điểm uốn là nghiệm phương trình y'' = 0 ).

Chọn đáp án A.

1 tháng 8 2017

Đáp án B.

y' = 3x2 + 6x – 9

y’’ = 6x + 6

y’’ = 0 ó x = -1.

Thay x = -1 vào hàm số y = 12

4 tháng 1

x3 và 3x2

a) TXĐ: R

📷

y’>0 trên khoảng (-∞; -2)và (0; +∞)

y'<0 trên khoảng (-2; 0)

yCĐ=y(-2)=0; yCT=y(0)=-4

📷

y”=6x+6=6(x+1)=0 <=> x = -1

Bảng xét dấu y’’

X-∞-1+∞Y’’–0+Đồ thịLồiđiểm uốn u(-1; -2)lõm

Hàm số lồi trên khoảng (-∞; -1)

Hàm số lõm trên khoảng -1; +∞)

Hàm số có 1 điểm uốn u(-1; -2)

Bảng biến thiên:

📷

Đồ thị

Đi qua điểm (1; 0) và (-3; -4)

b) Hàm số y=x3+3x2-4 có điểm uốn u(-1; -2)

Ta có: y’=3x2-4 ; y’(-1) = -3

Phương trình tiếp tuyến tại điểm uốn u(-1; -2) có dạng

y-y0=y'(x0)(x-x0)

<=> y+2=-3(x+1)

<=> y=-3x-5

Vậy phương trình tiếp tuyến tại điểm uốn là: y = -3x – 5.

📷

c) Đồ thị nhận I(-1; -2) là tâm đối xứng khi và chỉ khi:

f(x0+x)+f(x0-x)=2y0 với ∀x

<=> f(x-1)+f(-x-1)=-4 ∀x

<=> (x-1)3+3(x-1)2-4+(-1-x)3+3(-1-x)2-4 ∀x

<=> x3-3x2+3x-1+3x2-6x+3-5-3x-3x2-x3+3+6x+3x2-4=-4 ∀x

<=>-4=4 ∀x

=> I(-1; -2) là tâm đối xứng của đồ thị.

bạn vào chính câu hỏi này của bạn trong bingbe xem

18 tháng 9 2019

Đáp án: C.

y = -3 là tiệm cận ngang của đồ thị hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

18 tháng 12 2019

 Đáp án B.

Số điểm chung là số nghiệm phân biệt của phương trình hoành độ:

-x3 + 3x2 + 2x – 1 = 3x2 – 2x – 1 => x3 – 4x = 0 => x = 0; x = ±2  

Phương trình có 3 nghiệm phân biệt nên số điểm chung là 3

26 tháng 4 2017

+ Đồ thi hàm số đã cho co TCĐ là : x= -1 và TCN là y= 1; tâm đối xứng- giao của 2 đườg tiệm cận có tọa độ là I ( -1; 1)

 Gọi  M x 0 ; x 0 - 2 x 0 + 1 ∈ C ,   x 0 ≠ - 1 ,   I ( - 1 ; 1 )

+  Phương trình tiếp tuyến tại M có dạng

+ Giao điểm của ∆   với tiệm cận đứng là  A - 1 ; x 0 - 5 x 0 + 1

+ Giao điểm của  ∆   với tiệm cận ngang là  B( 2x0+1; 1).

Ta có 

Bán kính đường tròn ngoại tiếp tam giác IAB là S=p.r, suy ra

Suy ra,

Chọn  D.

12 tháng 7 2019

Chọn D

y ' = 3 x 2 + 6 x + m 2 . Hàm số có hai điểm cực trị => y’=0 có hai nghiệm phân biệt <=> Δ ' = 3 2 - 3 . m 2 > 0 <=>  - 3   <   m   <   3

Chia y cho y’ ta được:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Giả sử x 1 ,   x 2  là hai nghiệm phân biệt của y’=0.

Phương trình đường thẳng đi qua hai điểm cực trị có dạng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

(d) có vectơ pháp tuyến là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vì hai điểm cực trị đối xứng với nhau qua (Δ) nên (d) ⊥ (Δ)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Thử lại khi m=0 ta có:  y = x 3 + 3 x 2 ; y ' = 3 x 2 + 6 x ; y ' ' = 6 x + 6

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y''(0) = 6 > 0; y''(-2) = -6 < 0

Tọa độ hai điểm cực trị của đồ thị hàm số là O(0;0), A(-2;4)

Trung điểm của OA là I(-1;2).

Ta thấy I(-1,2) không thuộc đường thẳng (Δ) . Vậy không tồn tại m.