Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Từ đề bài
=>\(\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{xy}{24}\)
- Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{xy}{24}\)\(=\dfrac{x-y-x+y+xy}{1-7+24}=\dfrac{\left(x-x\right)+\left(-y+y\right)+xy}{18}=\dfrac{xy}{18}\)
=> xy \(\in\) bội chung của 18.
- Vậy xy \(\in\) bội chung của 18.
( mình làm theo cách của mình nên cx chưa phải là chính xác nhé.)
Theo bài ra ta có : \(\left(x-y\right)\div\left(x+y\right)\div xy=1\div7\div24\)
\(\Rightarrow\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{xy}{24}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{\left(x-y\right)+\left(x+y\right)}{1+7}\\ =\dfrac{x-y+x+y}{8}\\ =\dfrac{\left(x+x\right)-\left(y-y\right)}{8}\\ =\dfrac{2x}{8}\\ =\dfrac{x}{4}\)
Tương tự :
\(\dfrac{x+y}{7}=\dfrac{x-y}{1}=\dfrac{\left(x+y\right)-\left(x-y\right)}{7-1}\\ =\dfrac{x+y-x+y}{6}\\ =\dfrac{\left(x-x\right)+\left(y+y\right)}{6}\\ =\dfrac{2y}{6}\\ =\dfrac{y}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{xy}{24}=\dfrac{x}{4}\\\dfrac{xy}{24}=\dfrac{y}{3}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4xy=24x\\3xy=24y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=\dfrac{24x}{4x}\\x=\dfrac{24y}{3y}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=6\\x=8\end{matrix}\right.\)
Vậy \(x;y=\left\{6;8\right\}\)
a: \(=2016+\dfrac{\dfrac{1}{5}+\dfrac{3}{8}+\dfrac{5}{11}}{-\dfrac{3}{10}+\dfrac{9}{10}-\dfrac{15}{22}}=2016+\dfrac{453}{440}:\dfrac{-9}{110}\)
\(=2016-\dfrac{151}{12}=\dfrac{24343}{12}\)
b: \(=\dfrac{1,3-13.2}{2.6}-\dfrac{5}{6}:2\)
\(=\dfrac{-119}{26}-\dfrac{5}{12}=\dfrac{-779}{156}\)
c: \(=15\left(-1-\dfrac{5}{7}-\dfrac{2}{7}\right)+\left(-105\right)\cdot\dfrac{1}{105}\)
\(=-30-1=-31\)
a.
\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)
TH1:
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
TH2:
\(x-\frac{3}{4}=0\)
\(x=\frac{3}{4}\)
Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)
b.
\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)
TH1:
\(\frac{1}{2}x-3=0\)
\(\frac{1}{2}x=3\)
\(x=3\div\frac{1}{2}\)
\(x=3\times2\)
\(x=6\)
TH2:
\(\frac{2}{3}x+\frac{1}{2}=0\)
\(\frac{2}{3}x=-\frac{1}{2}\)
\(x=-\frac{1}{2}\div\frac{2}{3}\)
\(x=-\frac{1}{2}\times\frac{3}{2}\)
\(x=-\frac{3}{4}\)
Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)
c.
\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)
\(-\frac{4}{3}x=\frac{13}{3}\)
\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)
\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)
\(x=-\frac{13}{4}\)
d.
\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)
\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)
\(x=5\)
a) \(\frac{2}{\left(x+2\right).\left(x+4\right)}+\frac{4}{\left(x+4\right).\left(x+8\right)}+\frac{6}{\left(x+8\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{x+14}{\left(x+2\right).\left(x+14\right)}-\frac{x+2}{\left(x+2\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{x+14-x+2}{\left(x+2\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{16}{\left(x+2\right).\left(x+4\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow x=16\)
Vậy x = 16
\(b,\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(vì\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\right)\)
\(\Leftrightarrow x=-1\)
\(\text{Vậy }x=-1\)
b. (x+1)(1/10+1/11+1/12-1/13-1/14)=0
x+1=0 (vì : 1/10+1/11+1/12-1/13-1/14>0)
x=-1
a/ \(\left|3x-1\right|=\left|5-2x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5-2x\\3x-1=-5+2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2x=5+1\\3x-2x=-5+1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}5x=6\\x=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=-4\end{matrix}\right.\)
Vậy ......
b/ \(\left|x+2\right|-\left|x+7\right|=0\)
\(\Leftrightarrow\left|x+2\right|=\left|x+7\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=x+7\\x+2=-x-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-x=7-2\\x+x=-7-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\2x=-9\end{matrix}\right.\)
\(\Leftrightarrow x=-\dfrac{9}{2}\)
Vậy ...............
c/ \(\left|2x-1\right|+x=2\)
\(\Leftrightarrow\left|2x-1\right|=2-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2-x\\2x-1=-2+x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+x=2+1\\2x-x=-2-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=3\\x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy ..
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\)
\(A=1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+...+\frac{1+2+3+...+16}{16}\)
\(A=1+\frac{2\left(2+1\right):2}{2}+\frac{3\cdot\left(3+1\right):2}{3}+\frac{4\left(4+1\right):2}{4}+...+\frac{16\left(16+1\right):2}{16}\)
\(A=1+\frac{2+1}{2}+\frac{3+1}{2}+\frac{4+1}{2}+...+\frac{16+1}{2}\)
\(A=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(A=\frac{2+3+4+5+...+17}{2}\)
\(A=\frac{152}{2}\)
\(A=76\)
a) Vì A là tích của 99 số âm. Do đó
\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100^2}\right)\)
\(=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}....\frac{9999}{100^2}\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}\)
\(\Rightarrow-A=\frac{1.2.3...98.99}{2.3.4...99.100}.\frac{3.4.5...100.101}{2.3.4....99.100}\)
\(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}>\frac{1}{2}\)
Nhưng theo đề bài thì so sánh A với -1/2 mà đây là là -A với 1/2
Nên A <-1/2
Chắc chắn nhé bạn, bài tập bồi dưỡng toán của mình vừa mới làm mấy hum trước đó