Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A
M A B C E F
Xét ΔABC có MF // AB; BM=CM (gt)
=> AF=CF
Cmtt, ta đc: AE=BE
Do đó EF là đường TB ΔABC
=> EF // BC
Nên BCFE là hình thang (1)
Lại có: ΔABC cân tại A
=> B = C (2)
Từ (1)(2) suy ra BCFE là hình thang cân.
Hình vẽ ko đẹp lắm +_+ thông cảm hen----cx có nhiều cách giải khác nx nha bn
Em chưa học bài tập này