K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8

`A = (5m + n - 4)(9m - 11n + 1) `

- Xét m và n là số lẻ thì: 

`5m` là số lẻ

`n` là số lẻ

`=> 5m + n` là số chẵn

`=> 5m + n - 4 ` là số chẵn 

`=> A` chia hết 2

- Xét m và n là số chẵn thì: 

`5m` là số chẵn

`n` là số chẵn

`=> 5m + n` là số chẵn

`=> 5m + n - 4 ` là số chẵn 

`=> A` chia hết 2

- Xét m là số lẻ và n là số chẵn thì: 

`9m` là số lẻ

`11n` là số chẵn

`=> 9m - 11n` là số lẻ

`=> 9m - 11n + 1` là số chẵn

`=> A` chia hết cho 2

- Xét m là số chẵn và n là số lẻ thì: 

`9m` là số chẵn

`11n` là số lẻ

`=> 9m - 11n` là số lẻ

`=> 9m - 11n + 1  ` là số chẵn

`=> A` chia hết cho 2

Vậy với mọi số nguyên m và n thì A chia hết cho 2

NV
23 tháng 8

Ta có:

\(\left(5m+n-4\right)+\left(9m-11n+1\right)=10m-10n-3=2\left(5m-5n\right)-3\) luôn là số lẻ với mọi m;n nguyên

\(\Rightarrow5m+n-4\) và \(9m-11n+1\) luôn khác tính chẵn lẻ với mọi m; n nguyên

\(\Rightarrow\) Trong 2 số luôn có 1 số lẻ và 1 số chẵn

\(\Rightarrow\) Tích của 2 số luôn là 1 số chẵn 

\(\Rightarrow\) Tích của 2 số luôn chia hết cho 2 với mọi m;n nguyên

20 tháng 7 2018

mình ghi lộn 1 tí đề bài số 5 là CMR: xy chia hết cho 12

20 tháng 7 2018

1. a) Cho \(x^2-25=0\) 

\(\Rightarrow\left(x-5\right)\left(x+5\right)=0\) 

\(\Rightarrow\) x = 5 hoặc x = -5 

Vậy \(x=\pm5\)là nghiệm của đa thức đã cho.

b) Cho \(x^2+8x-9=0\)

\(\Rightarrow x^2-x+9x-9=0\)

\(\Rightarrow x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Rightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Rightarrow x=-9\) hoặc \(x=1\)

Vậy \(x=-9\) và \(x=1\) là nhiệm của đa thức đã cho.

16 tháng 8 2016

Mk chỉ bt lm phần trên thôi nha :)

Xét thừa số (n+3) ta thấy: 3 là số tự nhiên lẻ (1)

Lại có trong thừa số (n+6): 6 là số tự nhiên chẵn(2)

Mà số tự nhiên chia hết cho 2 là số tự nhiên chẵn và trong 1 tích chỉ cần 1 thừa số là số chẵn => tích đó chẵn.(3)

Từ (1) (2) và (3): (n+3)x(n+6) luôn là số chẵn hay chia hết cho 2 với mọi n thuộc N

a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:

\(n^5-n⋮5\)(vì 5 là số nguyên tố)

Ta có: \(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)

Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)

Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)

\(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)

và ƯCLN(2;3)=1

nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)

hay \(n^5-n⋮6\)

\(n^5-n⋮5\)(cmt)

và ƯCLN(6;5)=1

nên \(n^5-n⋮6\cdot5\)

hay \(n^5-n⋮30\)(đpcm)

8 tháng 1 2016

dễ zậy mà 5 tháng trời rùi vẫn hổng có ai giải đc

22 tháng 2 2019

Câu 1 :            Giải

* Nếu n chia 5 dư 1 thì n2 chia 5 dư 1

\(\Rightarrow\left(n^2+4\right)⋮5\)

* Nếu n chia 5 dư 4 thì n2 chia 5 dư 4

\(\Rightarrow\left(n^2+1\right)⋮5\)

\(\Rightarrow\left(n^2+1\right)\left(n^2+4\right)⋮5\)

Từ đó suy ra \(n\left(n^2+1\right)\left(n^2+4\right)⋮5\)( đpcm )

Câu 2 :              Giải

Ta có : \(n^2+4n^2+5=5n^2+5=5\left(n^2+1\right)\)

\(\Rightarrow n^2+4n^2+5=\overline{...5}\)

\(\Rightarrow\)\(\Rightarrow n^2+4n^2+5\) không chia hết cho 8 ( đpcm )

25 tháng 11 2017

Hình như tui làm đc nhưng ko biết có đúng không.