Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p là số nguyên tố lớn hơn 3 nên p sẽ không chia hết cho 3; có dạng là 3k+1 hoặc 3k+2
Nếu p có dạng 3k+1 thì p + 8 = 3k+1 + 8=3k+9 chia hết cho 3 => p có dạng 3k+1 là hợp số
Nếu p có dạng 3k+2 thì p+ 100= 3k+2+100 = 3k+102 chia hết cho 3 => p có dạng 3k+2 ko thỏa mãn, là hợp số( vì chia hết cho 3 )
Vậy p + 100 là hợp số
Ta có : p và p + 8 là số nguyên tố
=> p lẻ
=> p lớn hơn hoặc bằng 3 . p ko chia hết cho 3 và p có dạng 3k+1 hoặc 3k+2
Nếu p là 3k+1 => p+8 = 3k+1+8 chia hết cho 3=> p+8 là hợp số ( LOẠI )
=> p = 3k+2
=> p+100 = 3k+2 +100 = 3k+102 chia hết cho 3 => p+100 là hợp số ( THỎA MÃN YÊU CẦU )
thai huu tram:
Câu a) Đúng
Câu b) Sai (Vì đây là 1 số nguyên)
Câu c) Sai (Cũng là 1 số nguyên)
:), Chúc bạn học tốt!!!
Ta có: Để \(\frac{n}{n+3}\)là số nguyên thì \(n⋮n+3\)
Suy ra:n+3-3\(⋮n+3\)
Suy ra:-3\(⋮n+3\)
Suy ra:n+3\(\in\left[1;3\right]\)
Suy ra:n=0(n thuộc N)
Vậy:S={0}