Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hợp số. vì p > 3 => p khong chia hết cho 2
=>p2 khong chia het cho 2
=> p2 + 2003 chia hết cho 2
mà p2 + 2003 khác 2
=> p2+2003 là hợp số
P+8 là số nguyên tố (P>3)=>P=5;
5+100=105
105 chia hết cho 3;5;...=>P+100 là hợp số
* Nhớ **** cho mình nha
ai làm chi tiết cho mik đi mik tick người đó 5 li-ke
1, Ta có: p, p+1, p+2 là 3 số liên tiếp nên chắc chắn có 1 số chia hết cho 3 -> p+1 hoặc p+2 chia hết cho 3
p+2+6=p+8 là snt nên ko chia hết cho 3 nên p+1 chia hết cho 3 -> p+1+99 = p+100 chia hết cho 3 -> là hợp số
2, a, Nếu p có dạng 6k,6k+2,6k+3,6k+4 thì chia hết cho 2 hoặc 3
b, Do p là snt > 3 nên 8p ko chia hết cho 3. Trong 3 số liên tiếp 8p,8p+1,8p+2 có 8p và 8p+1 ko chia hết cho 3 nên 8p+2 chia hết cho 3.
Chia cho 2, do(2,3) = 1 nên 4p+1 chia hết cho 3 là hợp số
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
max dễ
Số nguyên tố nhỏ nhất là 2 + 7 thì bằng 9 là hợp số
Còn lại số nguyên tố toàn lẻ cộng 7 vào ra chẵn >> hợp số hết
p là số nguyên tố lớn hơn 3 nên p sẽ không chia hết cho 3; có dạng là 3k+1 hoặc 3k+2
Nếu p có dạng 3k+1 thì p + 8 = 3k+1 + 8=3k+9 chia hết cho 3 => p có dạng 3k+1 là hợp số
Nếu p có dạng 3k+2 thì p+ 100= 3k+2+100 = 3k+102 chia hết cho 3 => p có dạng 3k+2 ko thỏa mãn, là hợp số( vì chia hết cho 3 )
Vậy p + 100 là hợp số
Ta có : p và p + 8 là số nguyên tố
=> p lẻ
=> p lớn hơn hoặc bằng 3 . p ko chia hết cho 3 và p có dạng 3k+1 hoặc 3k+2
Nếu p là 3k+1 => p+8 = 3k+1+8 chia hết cho 3=> p+8 là hợp số ( LOẠI )
=> p = 3k+2
=> p+100 = 3k+2 +100 = 3k+102 chia hết cho 3 => p+100 là hợp số ( THỎA MÃN YÊU CẦU )