Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh giỏi, khá, trug bình và yếu lần lượt là a,b,c,d
Theo đề, ta có: \(\dfrac{a}{6}=\dfrac{b}{5}=\dfrac{c}{4}=\dfrac{d}{1}\) và a+d=21
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{5}=\dfrac{c}{4}=\dfrac{d}{1}=\dfrac{a+d}{6+1}=\dfrac{21}{7}=3\)
Do đó: a=18; b=15 c=12; d=3
Gọi số học sinh giỏ, khá, trung bình lần lượt là a, b,c
Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{3}\\a+b+c=48\end{matrix}\right.\)
áp dụng TCDTSBN ta có:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{3}=\dfrac{a+b+c}{4+5+3}=\dfrac{48}{12}=4\)
\(\dfrac{a}{4}=4\Rightarrow a=16\\ \dfrac{b}{5}=4\Rightarrow b=20\\ \dfrac{c}{3}=4\Rightarrow c=12\)
Vậy số học sinh giỏ, khá, trung bình của lớp 7A lần lượt là 16, 20,12 học sinh
Gọi số học sinh giỏi, khá, trung bình lần lượt là a, b, c
Theo đề, ta có: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c - a = 8
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{8}{2}=4\)
=> a = 4.3 = 12; b = 4.4 = 16; c = 4.5 = 20
Vậy số học sinh giỏi, khá, trung bình của lớp 7A lần lượt là 12 học sinh, 16 học sinh, 20 học sinh.
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{12}=\dfrac{a+b+c}{4+6+12}=\dfrac{44}{22}=2\)
Do đó: a=8; b=12; c=24
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{8}=\dfrac{c}{1}\\\dfrac{b}{5}=\dfrac{c}{2}\end{matrix}\right.\Leftrightarrow\dfrac{a}{16}=\dfrac{b}{5}=\dfrac{c}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{16}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a-b}{16-5}=\dfrac{22}{11}=2\)
Do đó: a=32; b=10; c=4
Gọi số HS trung bình, khá, giỏi lần lượt là a,b,c(học sinh)(a,b,c∈N*)
Áp dụng t/c dtsbn:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{45}{9}=5\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.2=10\\b=5.3=15\\c=5.4=20\end{matrix}\right.\)
Vậy....