K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề: O là giao của AC và BD

Xét ΔADC và ΔBCD có

AD=BC

DC chung

AC=BD

=>ΔADC=ΔBCD

=>góc ODC=góc OCD=45 độ

=>ΔDOC vuông cân tại O

b: góc OAB=góc ODC=45 độ

=>ΔOAB vuông cân tại O

=>2*OB^2=AB^2

=>AB=OB*căn 2
ΔODC vuông cân tại O

=>DC=OD*căn 2

=>AB+DC=6*căn 2(cm)

Kẻ BH vuông góc DC

Xét ΔBHD vuông tại H có góc BDH=45 độ

nên BH=BD*sin45=3*căn 2(cm)

=>S ABCD=1/2*3*căn 2*6căn 2=18cm2

8 tháng 5 2018

a)  Xét  \(\Delta OAB\)và   \(\Delta OCD\)có:

    \(\widehat{AOB}=\widehat{COD}\) (đối đỉnh)

   \(\widehat{OAB}=\widehat{OCD}\) (slt do AB // CD)

suy ra:   \(\Delta OAB~\Delta OCD\) (g.g)

b)   \(\Delta OAB~\Delta OCD\) (câu a)

\(\Rightarrow\)\(\frac{OA}{OC}=\frac{OB}{OD}\)

\(\Rightarrow\)\(OC=\frac{OA.OD}{OB}=\frac{8}{3}\)cm

c)  \(\Delta OAB~\Delta OCD\) (câu a)

\(\Rightarrow\)\(\frac{S_{OAB}}{S_{OCD}}=\left(\frac{AB}{CD}\right)^2=\frac{1}{4}\)

21 tháng 2 2020

may bn giai gap gium mik cam on may bn yeu nhiu😋😋😋😋

21 tháng 2 2020

A B C D M N H

a) \(S_{ABCD}=\frac{\left(3+7\right).4}{2}=20\left(cm^2\right)\)

b) Ta có : MA = MD

                NB = NC

\(\Rightarrow\)MN là đường trung bình của hình thang ABCD

\(\Rightarrow\)MN // BC (1)

Ta có : MD ⊥ BC

            NH ⊥ BC

\(\Rightarrow\)MD // NH (2)

Từ (1) và (2) suy ra : Tứ giác MNHD là hình bình hành

Mà : \(\widehat{MDH}=90^o\)

\(\Rightarrow\)Tứ giác MNHD là hình chữ nhật (dhnb)

Vì M là trung điểm của AD

\(\Rightarrow\)MD = \(\frac{1}{2}\)AD

\(\Rightarrow\)MD = 2 cm

Vì MN là đường trung bình của hình thang ABCD

\(\Rightarrow MN=\frac{3+7}{2}=5cm\)

Vậy \(S_{MNHD}=MD.MN=2.5=10\left(cm^2\right)\)

18 tháng 1 2018

Sửa :P và Q là trung điểm BH và HC nhé