K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(x\notin\left\{1;7\right\}\)

\(\dfrac{x-8}{x-7}=8+\dfrac{1}{1-x}\)

=>\(\dfrac{x-8}{x-7}=\dfrac{8-8x+1}{1-x}\)

=>\(\dfrac{x-8}{x-7}=\dfrac{-8x+9}{1-x}\)

=>\(\dfrac{x-8}{x-7}=\dfrac{8x-9}{x-1}\)

=>\(\left(8x-9\right)\left(x-7\right)=\left(x-8\right)\left(x-1\right)\)

=>\(8x^2-65x+63-x^2+9x-8=0\)

=>\(7x^2-56x+55=0\)

\(\text{Δ}=\left(-56\right)^2-4\cdot7\cdot55=1596>0\)

=>Phương trình có hai nghiệm phân biệt là:

\(\left[{}\begin{matrix}x=\dfrac{56-2\sqrt{399}}{2\cdot7}=\dfrac{28-\sqrt{399}}{7}\left(nhận\right)\\x=\dfrac{28+\sqrt{399}}{7}\left(nhận\right)\end{matrix}\right.\)

6:ĐKXĐ: x>=0; x<>1/25

BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)

=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)

=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)

=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)

=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)

7:

ĐKXĐ: x>=0

BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)

=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)

=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)

=>\(-\sqrt{x}-2>=0\)(vô lý)

8:

ĐKXĐ: x>=0; x<>9/4

BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)

=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)

=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)

TH1: 9căn x-14>0 và 2căn x-3<0

=>căn x>14/9 và căn x<3/2

=>14/9<căn x<3/2

=>196/81<x<9/4

TH2: 9căn x-14<0 và 2căn x-3>0

=>căn x>3/2 hoặc căn x<14/9

mà 3/2<14/9

nên trường hợp này Loại

9: 

ĐKXĐ: x>=0

\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)

=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)

=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)

=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)

10: 

ĐKXĐ: x>=0; x<>1/49

\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)

=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)

=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)

=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)

TH1: 6căn x-1>0 và 7căn x-1>0

=>căn x>1/6 và căn x>1/7

=>căn x>1/6

=>x>1/36

TH2: 6căn x-1<0 và 7căn x-1<0

=>căn x<1/6 và căn x<1/7

=>căn x<1/7

=>0<=x<1/49

30 tháng 8 2023

câu 9 nhầm đề bài r bạn

 

19 tháng 6 2017

a) \(\dfrac{1}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}=4\) (1)

\(\Leftrightarrow\dfrac{1}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-4=0\)

\(\Leftrightarrow\dfrac{2-\sqrt{x}+2+\sqrt{x}-4\left(2+\sqrt{x}\right)\cdot\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=0\)

\(\Leftrightarrow2-\sqrt{x}+2+\sqrt{x}-4\left(2+\sqrt{x}\right)\cdot\left(2-\sqrt{x}\right)=0\)

\(\Leftrightarrow2+2-4\left(4-x\right)=0\)

\(\Leftrightarrow2+2-16+4x=0\)

\(\Leftrightarrow-12+4x=0\)

\(\Leftrightarrow4x=12\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{3\right\}\)

b) \(\dfrac{8-\sqrt{x}}{\sqrt{x}-7}+\dfrac{1}{7-\sqrt{x}}=8\) (2)

\(\Leftrightarrow\dfrac{8-\sqrt{x}}{\sqrt{x}-7}+\dfrac{1}{7-\sqrt{x}}-8=0\)

\(\Leftrightarrow\dfrac{8-\sqrt{x}-1-8\left(\sqrt{x}-7\right)}{\sqrt{x}-7}=0\)

\(\Leftrightarrow8-\sqrt{x}-1-8\left(\sqrt{x}-7\right)=0\)

\(\Leftrightarrow8-\sqrt{x}-1-8\sqrt{x}+56=0\)

\(\Leftrightarrow63-9\sqrt{x}=0\)

\(\Leftrightarrow-9\sqrt{x}=-63\)

\(\Leftrightarrow\sqrt{x}=7\)

\(\Leftrightarrow x=49\)

sau khi thử lại ta nhận thấy: \(\dfrac{8-\sqrt{49}}{\sqrt{49}-8}+\dfrac{1}{7-\sqrt{49}}=8\)\(\Leftrightarrow\dfrac{1}{0}+\dfrac{1}{7-\sqrt{49}}=8\)

\(\Rightarrow x\ne48\)

\(\Rightarrow x\in\varnothing\)

19 tháng 6 2017

quên đk à?? (giống tớ rồi, t cũng hay quên đk)

#TAPN

17 tháng 4 2018

15

\(\dfrac{7}{x-2}\)+\(\dfrac{8}{x-5}\)=3 (x khác 2 khác 5)

\(\Leftrightarrow\)7*(x-5)+8(x-2)=3(x-2)(x-5)

\(\Leftrightarrow\)15x-51=3x^2-21x+30\(\Leftrightarrow\)3x^2-36x+81=0

\(\Leftrightarrow\)\(\begin{matrix}&\end{matrix}\)\(\left[{}\begin{matrix}9\\3\end{matrix}\right.\) tmđk

16\(\dfrac{x^2-3x+6}{x^2-9}\)=\(\dfrac{1}{x-3}\)(x khác +_3)

\(\Leftrightarrow\)x^2-3x+6=x+3

\(\Leftrightarrow\)x^2-4x+3=0\(\Leftrightarrow\)\(\left[{}\begin{matrix}3loại\\1\end{matrix}\right.\)

vậy x=1 là nghiệm của pt

25 tháng 4 2018

17 \(\dfrac{3}{x^2-4}\) = \(\dfrac{1}{x-2}+\dfrac{1}{x+2}\)

<=> x + 2 + x - 2 = 3

<=> 2x = 3

<=> x = \(\dfrac{3}{2}\)

22 tháng 6 2021

giúp em với mọi người ơi 😭😭😭😭

16 tháng 8 2021

Giúp em với ạ! Em cảm ơn

16 tháng 8 2021

\(b,\)Đặt \(\sqrt{x^2+8x}=a\left(a\ge0\right)\)

Khi đó phương trình trở thành:

\(a^2-3=2a\\ \Leftrightarrow a^2-2a-3=0\\ \Leftrightarrow\left[{}\begin{matrix}a=-1\\a=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+8x}=-1\\\sqrt{x^2+8x}=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+8x=1\\x^2+8x=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+8x-1=0\\x^2+8x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4+\sqrt{17}\\x=-4-\sqrt{17}\\x=1\\x=-9\end{matrix}\right.\)

8 tháng 1 2018

a) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{7}{x}=16\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{7}{16}\\y=-\dfrac{42}{17}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{7}{16};-\dfrac{42}{17}\))}

b) Đk xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{13}{x}=6\\\dfrac{5}{x}+\dfrac{1}{y}=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{13}{6}\\y=\dfrac{13}{152}\end{matrix}\right.\)

Vậy S={(\(\dfrac{13}{6};\dfrac{13}{152}\))}

c) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{2}{y}=10\\\dfrac{2}{x}+\dfrac{7}{y}=21\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=-\dfrac{1}{7}\end{matrix}\right.\)

Vậy S={(\(-\dfrac{1}{7};\dfrac{1}{5}\))}

d) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{14}{x}=35\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)

Vậy S={(0,4;-4)}

e) ĐKXĐ : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-\dfrac{2}{y}=18\\\dfrac{3}{x}+\dfrac{5}{y}=10\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{1}{9}\\x=\dfrac{3}{55}\end{matrix}\right.\) 'Vậy....

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:
Đặt $\frac{x-1}{x+2y}=a; \frac{y+1}{x-2y}=b$ thì HPT trở thành:
\(\left\{\begin{matrix} 5a+3b=8\\ 20a-7b=-6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 20a+12b=32\\ 20a-7b=-6\end{matrix}\right.\)

\(\Rightarrow 19b=38\Rightarrow b=2\Rightarrow a=0,4\)

Ta có:

\(\left\{\begin{matrix} a=\frac{2}{5}\\ b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x-1}{x+2y}=\frac{2}{5}\\ \frac{y+1}{x-2y}=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3x=4y+5\\ 2x=1+5y\end{matrix}\right.\)

\(\Rightarrow 2(4y+5)-3(1+5y)=0\Rightarrow y=1\)

Kéo theo $x=3$

Vậy $(x,y)=(3,1)$

14 tháng 10 2021

ĐKXĐ: \(x\ne y,x\ne-y\)

\(hpt\Leftrightarrow\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)-\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)=\dfrac{5}{8}-\dfrac{3}{8}\)

\(\Leftrightarrow0=\dfrac{1}{4}\left(VLý\right)\)

Vậy hpt vô nghiệm

14 tháng 10 2021

cái này sử dụng cách thế ko đc hả??

22 tháng 3 2023

\(A=\left(\dfrac{x+8}{x\sqrt{x}+8}-\dfrac{2}{x-2\sqrt{x}+4}\right):\dfrac{1}{\sqrt{x}-1}\left(ĐKXĐ:x\ge0;x\ne1\right)\)

\(=\left[\dfrac{x+8}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}-\dfrac{2}{x-2\sqrt{x}+4}\right].\left(\sqrt{x}-1\right)\)

\(=\dfrac{x+8-2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}.\left(\sqrt{x}-1\right)\)

\(=\dfrac{x+8-2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}.\left(\sqrt{x}-1\right)\)

\(=\dfrac{x-2\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}.\left(\sqrt{x}-1\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

Vậy \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\) , với  \(x\ne1;x\ge0\)

22 tháng 3 2023

\(A=\left(\dfrac{x+8}{\left(\sqrt{x}\right)^3+8}-\dfrac{2}{x-2\sqrt{x}+4}\right):\dfrac{1}{\sqrt{x}-1}\\ =\dfrac{x+8-2.\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\times\dfrac{\sqrt{x}-1}{1}\\ =\dfrac{x+8-2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}.\dfrac{\sqrt{x}-1}{1}\\ =\dfrac{x-2\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}.\left(\sqrt{x}-1\right)\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)