Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1.3.5+2.6.10+4.12.20+7.21.35}{1.5.7+2.10.14+4.20.28+7.35.49}\)
A = \(\frac{1.3.5.\left(1+2+4+7\right)}{1.5.7.\left(1+2+4+7\right)}\)
A = \(\frac{1.3.5}{1.5.7}\)
A = \(\frac{3}{7}\)
\(=\dfrac{2}{3}+\dfrac{1}{5}-\dfrac{2}{3}-4\)
\(=\dfrac{1}{5}-4=\dfrac{-19}{5}\)
= 11.(-12+-5)/19.(17+17)+2 =11.-17/17.34+2 =-1.11.17/17.34 +2 =-11/34 +2 =-11/34+68/34 =57/34
B1: Tính nhanh:
\(E=\dfrac{-9}{10}\cdot\dfrac{5}{14}+\dfrac{1}{10}\cdot\dfrac{-9}{2}+\dfrac{1}{7}\cdot\dfrac{-9}{10}\)
\(E=\dfrac{-9}{10}\cdot\dfrac{5}{14}+\dfrac{-9}{10}\cdot\dfrac{1}{2}+\dfrac{1}{7}\cdot\dfrac{-9}{10}\)
\(E=\dfrac{-9}{10}\cdot\left(\dfrac{5}{14}+\dfrac{1}{2}+\dfrac{1}{7}\right)\)
\(E=\dfrac{-9}{10}\cdot\left(\dfrac{5}{14}+\dfrac{7}{14}+\dfrac{2}{14}\right)\)
\(E=\dfrac{-9}{10}\cdot1=\dfrac{-9}{10}\)
B2: Chứng tỏ rằng:
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}< 1\)
Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow1-\dfrac{1}{100}=\dfrac{99}{100}\)
Mà \(\dfrac{99}{100}< 1\)
\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}< 1\)
Tick mình nha!
`|7/5 x+2/3| = |4/3 x-1/4|`
\(\left[{}\begin{matrix}\dfrac{7}{5}x+\dfrac{2}{3}=\dfrac{4}{3}x-\dfrac{1}{4}\\\dfrac{7}{5}x+\dfrac{2}{3}=-\dfrac{4}{3}x+\dfrac{1}{4}\end{matrix}\right.\\ \left[{}\begin{matrix}x=-\dfrac{55}{4}\\x=-\dfrac{25}{164}\end{matrix}\right.\)
`|5/4 x-7/2| -|5/8 x +3/5|=0`
`|5/4 x-7/2|=|5/8 x+3/5|`
\(\left[{}\begin{matrix}\dfrac{5}{4}x-\dfrac{7}{2}=\dfrac{5}{8}x+\dfrac{3}{5}\\\dfrac{5}{4}x-\dfrac{7}{2}=-\dfrac{5}{8}x-\dfrac{3}{5}\end{matrix}\right.\\ \left[{}\begin{matrix}x=\dfrac{164}{25}\\x=\dfrac{116}{75}\end{matrix}\right.\)
Vậy....