Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\sqrt{3}+4\sqrt{3}+20\sqrt{3}-10\sqrt{3}=15\sqrt{3}\\ b,=4\sqrt{5}+\sqrt{5}-1-\dfrac{20\left(\sqrt{5}-1\right)}{4}\\ =5\sqrt{5}-1-5\sqrt{5}+5=4\\ c,=\dfrac{6\sqrt{13}+6+6\sqrt{13}-6}{\left(\sqrt{13}-1\right)\left(\sqrt{13}+1\right)}=\dfrac{12\sqrt{13}}{12}=\sqrt{13}\\ d,=\left(\sin^238^0+\cos^238^0\right)+\left(\tan67^0-\tan67^0\right)=1+0=1\)
a: \(=\sqrt{3}+4\sqrt{3}+4\cdot5\sqrt{3}-10\sqrt{3}\)
\(=15\sqrt{3}\)
b: \(=2\cdot2\sqrt{5}+\sqrt{5}-1-5+5\sqrt{5}\)
=-6
Lời giải:
Gọi biểu thức là $A$
\(A=\frac{-\sqrt{3}(1-\sqrt{2})}{1-\sqrt{2}}+\frac{\sqrt{3}(\sqrt{3}+6)}{\sqrt{3}}-\frac{13(\sqrt{3}+4)}{(\sqrt{3}+4)(\sqrt{3}-4)}\)
\(=-\sqrt{3}+\sqrt{3}+6-\frac{13(\sqrt{3}+4)}{3-16}=6-(-\sqrt{3}-4)=10+\sqrt{3}\)
a) Ta có: \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}\)
\(=10\sqrt{5}\)
b) Ta có: \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
\(=3\left(2-\sqrt{3}\right)+4+\sqrt{3}+2\sqrt{3}\)
\(=6-2\sqrt{3}+4+3\sqrt{3}\)
\(=10+\sqrt{3}\)
c) Ta có: \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
=7-5=2
d) Ta có: \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
\(=2+\sqrt{3}-5+\sqrt{3}\)
\(=-3+2\sqrt{3}\)
a. \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
\(=2.4\sqrt{5}+3.3\sqrt{5}-7\sqrt{5}\)
\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}\)
\(=10\sqrt{5}\)
b. \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
\(=\dfrac{3\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\dfrac{13\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}+\dfrac{6\sqrt{3}}{\sqrt{3}.\sqrt{3}}\)
\(=\dfrac{3\left(2-\sqrt{3}\right)}{4-3}+\dfrac{13\left(4+\sqrt{3}\right)}{16-3}+\dfrac{6\sqrt{3}}{3}\)
\(=3\left(2-\sqrt{3}\right)+\dfrac{13\left(4+\sqrt{3}\right)}{13}+2\sqrt{3}\)
\(=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}\)
\(=10\)
c. \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right).\left(\sqrt{7}-\sqrt{5}\right)\)
\(=\left(\sqrt{7}+\sqrt{5}\right).\left(\sqrt{7}-\sqrt{5}\right)\)
\(=7-5=2\)
d. \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
\(=\left|2+\sqrt{3}\right|-\sqrt{5^2-2.5.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\left|2+\sqrt{3}\right|-\left(5-\sqrt{3}\right)^2\)
\(=\left|2+\sqrt{3}\right|-\left|5-\sqrt{3}\right|\)
\(=2+\sqrt{3}-\left(5-\sqrt{3}\right)\) (vì \(\left|2+\sqrt{3}\right|\ge0,\left|5-\sqrt{3}\right|\ge0\))
\(=2+\sqrt{3}-5+\sqrt{3}\)
\(=2\sqrt{3}-3\)
Lời giải:
a.
\(=2\sqrt{4^2.5}+3\sqrt{3^2.5}-\sqrt{7^2.5}=2.4\sqrt{5}+3.3\sqrt{5}-7\sqrt{5}\)
\(=8\sqrt{5}+9\sqrt{5}-7\sqrt{5}=10\sqrt{5}\)
b.
\(=\frac{3(2-\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}+\frac{13(4+\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})}+\frac{6\sqrt{3}}{3}\)
\(=\frac{6-3\sqrt{3}}{1}+\frac{13(4+\sqrt{3})}{13}+2\sqrt{3}=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}\)
\(=10\)
c.
\(=\left[\frac{\sqrt{7}(\sqrt{2}-1)}{\sqrt{2}-1}+\frac{\sqrt{5}(\sqrt{3}-1)}{\sqrt{3}-1}\right].(\sqrt{7}-\sqrt{5})\)
\(=(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})=7-5=2\)
d.
\(=|2+\sqrt{3}|-\sqrt{5^2-2.5\sqrt{3}+3}=|2+\sqrt{3}|-\sqrt{(5-\sqrt{3})^2}\)
\(=|2+\sqrt{3}|-|5-\sqrt{3}|=2+\sqrt{3}-(5-\sqrt{3})=-3+2\sqrt{3}\)
1: \(D=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
2: \(\Leftrightarrow D=\dfrac{4\sqrt{x}+12-x+\sqrt{x}-13}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
\(\Leftrightarrow D=\dfrac{-x+5\sqrt{x}-1}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{-x+5\sqrt{x}-1}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}=1\)
\(\Leftrightarrow\left(-x+5\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)=\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\)
\(\Leftrightarrow-2x\sqrt{x}-x+10x+5\sqrt{x}-2\sqrt{x}-1=x\sqrt{x}+3x+x+3\sqrt{x}+\sqrt{x}+3\)
\(\Leftrightarrow-2x\sqrt{x}+9x-3\sqrt{x}-1=x\sqrt{x}+4x+4\sqrt{x}+3\)
\(\Leftrightarrow-3x\sqrt{x}+5x-7\sqrt{x}-4=0\)
Bạn xem lại đề nhé, nghiệm rất xấu
a: \(=2\cdot\sqrt{\dfrac{18-2\sqrt{77}}{4}}-\sqrt{20+6\sqrt{11}}\)
\(=\sqrt{11}-\sqrt{7}-\sqrt{11}-3=-\sqrt{7}-3\)
b: B=\(=\left(\sqrt{13}-1\right)\cdot\sqrt{\dfrac{7+\sqrt{13}}{18}}+\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Đặt \(C=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Leftrightarrow C^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{16-10-2\sqrt{5}}\)
\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)
=>\(C=\sqrt{5}+1\)
\(B=\left(\sqrt{13}-1\right)\cdot\sqrt{\dfrac{14+2\sqrt{13}}{36}}+\sqrt{5}+1\)
\(=\dfrac{\left(\sqrt{13}-1\right)\left(\sqrt{13}+1\right)}{6}+\sqrt{5}+1\)
=(13-1)/6+căn5+1
=3+căn5
\(\dfrac{\sqrt{13}}{\sqrt{\sqrt{13}+1-1}}-\dfrac{\sqrt{13}}{\sqrt{\sqrt{13}+1+1}}\\ =\dfrac{\sqrt{13}}{\sqrt{\sqrt{13}}}-\dfrac{\sqrt{13}}{\sqrt{\sqrt{13}+2}}\\ =\sqrt{\dfrac{13}{\sqrt{13}}}-\sqrt{\dfrac{13}{\sqrt{13}+2}}\\ =\sqrt[4]{13}-\sqrt{\dfrac{13\sqrt{13}-26}{9}}\\=\sqrt[4]{13}-\dfrac{\sqrt{13\sqrt{13}-26} }{3}\\ =\dfrac{3\sqrt[4]{13}-\sqrt{13\sqrt{13}-26}}{3}\)