K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 1

\(=\dfrac{7}{1.8}+\dfrac{7}{8.15}+\dfrac{7}{15.24}+...++\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\)

\(=1-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{24}+...+\dfrac{1}{7n-6}-\dfrac{1}{7n+1}+\dfrac{1}{7n+1}\)

\(=1\)

\(\dfrac{7}{8}+\dfrac{7}{120}+\dfrac{7}{360}+\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\)

\(=\dfrac{7}{1\cdot8}+\dfrac{7}{8\cdot15}+\dfrac{7}{360}+\dfrac{1}{7n-6}-\dfrac{1}{7n+1}+\dfrac{1}{7n+1}\)

\(=1-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{15}+\dfrac{7}{360}+\dfrac{1}{7n-6}\)

\(=\dfrac{14}{15}+\dfrac{7}{360}+\dfrac{1}{7n-6}=\dfrac{343}{360}+\dfrac{1}{7n-6}\)

\(=\dfrac{343\left(7n-6\right)+360}{360\left(7n-6\right)}\)

\(=\dfrac{2401n-1698}{360\left(7n-6\right)}\)

14 tháng 1

\(\dfrac{7}{8}+\dfrac{7}{120}+\dfrac{7}{360}+\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\\ =\left(\dfrac{7}{8}+\dfrac{7}{120}+\dfrac{7}{360}\right)+\left(\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\right)\\ =\left(\dfrac{315}{360}+\dfrac{21}{360}+\dfrac{7}{360}\right)+\left(\dfrac{7}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{7n-6}{\left(7n+1\right)\left(7n-6\right)}\right)\)

\(=\dfrac{343}{360}+\dfrac{7n+1}{\left(7n-6\right)\left(7n+1\right)}\\ =\dfrac{343}{360}+\dfrac{1}{7n-6}\\ =\dfrac{343\left(7n-6\right)+360}{360\left(7n-6\right)}\\ =\dfrac{2401n-2058+360}{360\left(7n-6\right)}\\ =\dfrac{2401n-1698}{360\left(7n-6\right)}\)

 

a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}=\dfrac{1}{2}\cdot\dfrac{2n}{2n+1}=\dfrac{n}{2n+1}\)

b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)

\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)

 

a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}\)

\(=\dfrac{n}{2n+1}\)

b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)

\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)

\(\Leftrightarrow-\dfrac{57}{56}:\dfrac{-1}{56}-\dfrac{44}{4x-1}=-\dfrac{31}{30}:\dfrac{-1}{30}\)

\(\Leftrightarrow57-\dfrac{44}{4x-1}=31\)

=>44/(4x-1)=26

=>4x-1=22/13

=>4x=35/13

hay x=35/52

22 tháng 4 2017

a) 1x−1−3x2x3−1=2xx2+x+1

Ta có: x3−1=(x−1)(x2+x+1)

=(x−1)[(x+12)2+34] cho nên x3 – 1 ≠ 0 khi x – 1 ≠ 0⇔ x ≠ 1

Vậy ĐKXĐ: x ≠ 1

Khử mẫu ta được:

x2+x+1−3x2=2x(x−1)⇔−2x2+x+1=2x2−2x

⇔4x2−3x−1=0

b: Đặt \(x^2-6x-2=a\)

Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)

=>(a+2)(a+7)=0

\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)

=>x(x-6)(x-1)(x-5)=0

hay \(x\in\left\{0;1;6;5\right\}\)

c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)

\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)

\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)

\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)

=>26x=-3

hay x=-3/26

8 tháng 6 2017

a) \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}=1-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\)

ĐKXĐ \(x-1\ne0\) hoặc \(x+3\ne0\)

\(\Rightarrow x\ne1\)\(x\ne-3\)

\(\dfrac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(2x+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)

\(\Leftrightarrow3x^2+9x-x-3-\left(2x^2-2x+5x-5\right)=x^2+3x-x-3-4\)

\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5=x^2+3x-x-3-4\)

\(\Leftrightarrow9x-x+2x-5x-3x+x=3-5-3-4\)

\(\Leftrightarrow3x=-9\)

\(\Leftrightarrow x=-3\) (không thỏa ĐK)

Vậy PTVN

b) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{\left(x-3\right)\left(x+3\right)}\)

ĐKXĐ: \(x-3\ne0\Rightarrow x\ne3\)

\(x+3\ne0\Rightarrow x\ne-3\)

\(2x+7\ne0\Rightarrow2x\ne-7\Rightarrow x\ne\dfrac{-7}{2}\)

\(\dfrac{13\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}+\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}=\dfrac{6\left(2x+7\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}\)

\(\Leftrightarrow13\left(x+3\right)+\left(x-3\right)\left(x+3\right)=6\left(2x+7\right)\)

\(\Leftrightarrow13x+39+x^2+3x-3x-9=12x+42\)

\(\Leftrightarrow x^2+x-12=0\)

\(\Leftrightarrow x^2-3x+4x-12=0\)

\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)

\(\left\{{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\left(KTĐK\right)\\x=-4\left(TĐK\right)\end{matrix}\right.\)

Vậy S={-4}

8 tháng 6 2017

a) \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}=1-\dfrac{4}{\left(x-1\right)\left(x+3\right)}\) ( đk: x ≠ 1 ; x ≠ -3 )

\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)

\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5=x^2+3x-x-3-4\)

\(\Leftrightarrow3x=-9\)

\(\Rightarrow x=-3\left(KTM\right)\)

S = ∅

b) \(\dfrac{13}{\left(x-3\right)\left(2x+7\right)}+\dfrac{1}{2x+7}=\dfrac{6}{\left(x-3\right)\left(x+3\right)}\)

( đk: x ≠ ± 3 ; x ≠ \(\dfrac{-7}{2}\) )

\(\Leftrightarrow13\left(x+3\right)+\left(x-3\right)\left(x+3\right)=6\left(2x+7\right)\)

\(\Leftrightarrow13x+39+x^2-9=12x+42\)

\(\Leftrightarrow x^2-x-12=0\)

\(\Leftrightarrow x^2+3x-4x-12=0\)

\(\Leftrightarrow x\left(x+3\right)-4\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-4=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\left(TM\right)\\x=3\left(KTM\right)\end{matrix}\right.\)

S = \(\left\{4\right\}\)

6 tháng 2 2018

1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)

ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )

\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)

vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn