Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{-3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
\(\Rightarrow\left(\dfrac{-3}{4}\right)^{3x-1}=\left(\dfrac{4}{3}\right)^4\)
Xem lại đề
b) x/-4=-48/3x
=>x.3x=-4.(-48)
=>3x2= 192
=>x2=64
=>x=8
Vậy............
\(a,1\dfrac{2}{3}x-\dfrac{1}{4}=\dfrac{5}{6}.\)
\(1\dfrac{2}{3}x=\dfrac{5}{6}+\dfrac{1}{4}.\)
\(1\dfrac{2}{3}x=\dfrac{13}{12}.\)
\(x=\dfrac{13}{12}:1\dfrac{2}{3}.\)
\(x=\dfrac{13}{20}.\)
Vậy \(x=\dfrac{13}{20}.\)
\(c,3^{2x+1}=81.\)
\(3^{2x+1}=3^4.\)
\(\Rightarrow2x+1=4.\)
\(\Rightarrow2x=5.\)
\(\Rightarrow x=\dfrac{5}{2}.\)
Vậy \(x=\dfrac{5}{2}.\)
\(f\left(x\right)=4x^2+3x+1\)
\(g\left(x\right)=3x^2-2x+1.\)
a) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(\Rightarrow h\left(x\right)=\left(4x^2+3x+1\right)-\left(3x^2-2x+1\right)\)
\(\Rightarrow h\left(x\right)=4x^2+3x+1-3x^2+2x-1\)
\(\Rightarrow h\left(x\right)=\left(4x^2-3x^2\right)+\left(3x+2x\right)+\left(1-1\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x.\)
b) Ta có \(h\left(x\right)=x^2+5x.\)
Đặt \(x^2+5x=0\)
\(\Rightarrow x.\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x=0\) và \(x=-5\) là các nghiệm của đa thức \(h\left(x\right).\)
Chúc bạn học tốt!
\(b,\Rightarrow\dfrac{x}{2}-\dfrac{3x}{5}-\dfrac{13}{5}=-\dfrac{7}{5}-\dfrac{7x}{10}\\ \Rightarrow\dfrac{1}{2}x-\dfrac{3}{5}x+\dfrac{7}{10}x=\dfrac{6}{5}\\ \Rightarrow\dfrac{3}{5}x=\dfrac{6}{5}\Rightarrow x=2\\ c,\Rightarrow\dfrac{2x-3}{3}-\dfrac{5-3x}{6}=-\dfrac{1}{3}+\dfrac{3}{2}=\dfrac{7}{6}\\ \Rightarrow\dfrac{4x-6-5+3x}{6}=\dfrac{7}{6}\\ \Rightarrow7x-11=7\Rightarrow x=\dfrac{18}{7}\\ d,\Rightarrow\dfrac{2}{3x}+\dfrac{7}{x}=\dfrac{4}{5}+2+\dfrac{3}{12}=\dfrac{61}{20}\\ \Rightarrow\dfrac{23}{3x}=\dfrac{61}{20}\\ \Rightarrow183x=460\\ \Rightarrow x=\dfrac{460}{183}\\ e,\Rightarrow2\left(x-1\right)-\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left(2-x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
e: Ta có: \(\left(x-1\right)^2=2\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(\dfrac{3x-2}{4}=\dfrac{9}{3x-2}\\ \Rightarrow\left(3x-2\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}3x-2=-6\\3x-2=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=\dfrac{8}{3}\end{matrix}\right.\)
\(\dfrac{3x-2}{4}=\dfrac{9}{3x-2}\left(đk:x\ne\dfrac{2}{3}\right)\)
\(\Rightarrow\left(3x-2\right)^2=36\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=6\\3x-2=-6\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=-18\\3x-2=18\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{16}{3}\\x=\dfrac{20}{3}\end{matrix}\right.\)